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Abstract—A common transcoding operation consists of the capabilities of the receiving terminal. For instance,
reducing the file size of a JPEG image to meet bandwidth in MMS, the limited memory of some mobile devices
or device constraints. This can be achieved by reducing its requires individual images to be under a certain file size
quality factor (QF) or reducing its resolution, or both. o resolution in order to be received and displayed. More
In this paper, using the Structural SIMilarity (SSIM) g0 cifically MMS v1.3 defines several content classes

index as the quality metric, we present a system capable in its conformance document with strict maximum file
of estimating the QF and scaling parameters to achieve in i u wi : imum i

optimal quality while meeting a device’s constraints. We SiZ€S and resolutions [4]: Image Basic (30kB, 160x120),
then propose a novel low-complexity JPEG transcoding /mage Rich (100kB, 640x480), Video Rich (100kB,
system which delivers near-optimal quality. The system is 640x480), Content Rich (600kB, 1600x1200), etc. In
capable of predicting the best combination of QF and scal- the case of browsing, large file sizes may result in the
ing parameters for a wide range of device constraints and yser waiting an unacceptable length of time to access
viewing conditions. Although its computational complexiy gnd display content. Therefore, file size reduction may

is an order of magnitude smaller than the system providing help reducing latency and increasing the user experience.
optimal quality, the proposed system yields quality resuk

very similar to those of the optimal system. . . . .
y P y Changing an image’s resolution, etaling, to meet

~ Index Terms—JPEG, image transcoding, image adapta- a terminal’s capabilities is a problem with well-known
tion, resolution reduction, file size reduction, image quaty,  gojytions. However, optimizing image quality against
SSIM. file size constraints remains a challenge, as there are
no well-established relationships between the quality
|. INTRODUCTION factor (QF), perceived quality, and the compressed file

_ ~size. Using arbitrary scaling as an additional means of
The heterogeneous nature of mobile terminalghieying precise file size reduction, rather than merely

and multimedia  applications renders transcodingsg|ytion adaptation, makes the problem all the more
inevitable  [1]. While Multimedia Messag'”gchallenging.

Services (MMS) require server-side adaptation to

ensure interoperability between terminals [2], other geyerq) studies have investigated the problem of file
applications, such as mobile browsing, will requirgjze (or pit rate) reduction for visual content [5]-[11].
adaptation of both page layout and media contefihejr results show that reduction can be achieved
in order to maximize the user experience (thgyrough adaptation of the quantization parameters
best compromise between quality and data accqgfner using adaptive prediction based on the
time) [3]. The image-related |nter_operab|!|ty ISSues MOBtevious frames [12], [13] or two-pass estimation [14]
frequently encountered do not involve image formatgy petter rate control) rather than through scaling. When
as the majority of the traffic involves JPEG and G'%caling is considered, only a:1 reduction is used,

images, but rather a resolution or file size exceedirplgosﬂy because of the relatively simple compressed

. , , domain solutions. For most studies, since they were
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excellent methods for scaling and then reducing thational complexity and failure rate. A fully worked out
file size of JPEG images, does not consider estimatitrgnscoding example is presented in section VI. Finally,
scaling and quality reduction in combination. Waection VIl concludes the paper.

believe this to be a major shortcoming, because the best

strategy for maximizing the user experience may well Il. THE TRANSCODING PROBLEM STATEMENT

be to scale down the picture and compress it with a\We now formally define the JPEG image transcoding
higher QF, rather than simply re-compressing it with Broblem, as well as the notation used in this paper.
lower QF. Let I be a JPEG compressed image ap& (1), S(I),

W(I), and H(I) its quality factor, compressed file

In previous work, we first presented an accurate aftz€, width, and height respectively. Note that we will
low-cost method to estimate the resulting compressa@sume that the definition of the QF complies with
fle size of a JPEG image subject to scaling arifie Independent JPEG Group definition [18]. For a
QF changes [15]. We noted that, for a given imagégrminal or deviceD, let S(D), W(D), and’H(D) be
potentially many different scaling and QF combinatioiis maximum permissible compressed data size, image
lead to approximatively the same compressed file siz@dth, and image height respectivel(D) and (D)
raising the question as to which combination wilre usually larger than the device’s screen resolution).
maximize the user experience, that is, offer the best
perceived transcoded quality, especially considering thalet 0 < zr <1 be an aspect-preserving scaling, or
scaling could be used to hide some artifacts resultiggom factor. A JPEG transcoding operation, denoted
from a coarser QF. This question was further exploréd(l, QFr,2,), is the function that returns the com-
in subsequent work [16], in which we proposed Rressed image resulting from the application of both the
system where QF and scaling are optimized jointly Rew quality factorQfr and the scaling parameter,
order to maximize perceived quality, as measured by tie the JPEG imagd. A JPEG transcoding operation
Structural SIMilarity index (SSIM) proposed by Waey 7 (I, QF'r, z,.) is defined adeasible on deviceD fif, for
al. [17]. Our results showed that, unlike PSNR, usingarameterd, QFr, andz,, we meet all of the following
SSIM leads to more subtle trade-offs between qualig@nstraints:
factor and scaling. In particular, we observed that the S(T(I,QFr,z,)) <S(D)
system proposed in [16] balances the loss of detail due 22 W(I) < W(D) 1)
to scaling and the blocking artifacts introduced by a -
low quality factor. Indeed, it will select solutions with ar H(I) < H(D)
smaller resolution as the maximum permissible relative We define the following set of feasible JPEG transco-
size becomes smaller rather than meeting the constraithtsy operations for the image on deviceD:
with very low quality factors leading to conspicuous F(I,D) =
blocking artifacts. ’ , _
{(QFr,z,)| T(I,QFr,z,)) is feasible onD}

In this paper, we further investigate methods of We defines(I, QFr, z, ), the relative size between the
combining QF and scaling parameters in JPEffanscoded image and the original imagévhich refers
transcoding to meet the terminal’s resolution and fi® the JPEG image initially received at the transcoder
size constraints, while at the same time maximizingnd not the original artifact-free image) as follows:
E)neertcrieéve\(/jvequallty as measured b)./ the SSIM qqallty S(T(I, QFszT))

. propose two systems: first, the optimal s(I,QFr,z,) =
quality JPEG transcoding system (OQJT), capable of S(I)
providing exact solutions; and second, the near-optimalLet s,,,...(I, D) be the maximum acceptable relative
quality JPEG transcoding system (NOQJT), whickize for imagel given deviceD. From egs. (1) and the
yields near-optimal quality using prediction algorithmstact that we never want to increase the original image’s
file size, it follows that:
The paper is organized as follows. We first state the s(I,QPrp, 2,) < $mas(I,D) =

transcoding problem in section Il. In section Ill, we S(D 2
show that many QF and scaling combinations vyield min <()71> <1
files of approximately the same size. The two proposed S(I)

systems are presented in section IV. They are comparedssuming that several values 6jFr and z, lead
in section V in terms of their resulting quality, computo feasible transcodings, we are interested in finding



Scaling,z7, %

(QF7(1,D), (1, D)), the transcoding parameters thatEﬁT 10 T20 T30 T20 150 160 1 70 T80 T 90 | 100

maximize the chosen quality criterion. They are defingtio 0.03 0.04 0.05 0.07] 0.08 0.10 0.12 0.15 0.17| 0.20
20 0.03 0.05 0.07 0.09 0.12 0.15 0.19 0.22 0.26 0.32

as: 30 0.04 0.05 0.08 0.11] 0.15 0.19 0.24/ 0.29| 0.34 0.41
(QF*(I D), 2" (I D)) — 40 0.04 0.06 0.09 0.13 0.17] 0.22 0.28 0.34| 0.40 0.50
TASH = Zpiss 50 0.04 0.06 0.10| 0.14/ 0.19 0.25 0.32| 0.39 0.46 0.54
arg max Q(I,T(I, QFT,ZT)) 60 0.04 0.07 0.11] 0.16 0.22| 0.28 0.36 0.44 0.53 0.71
70 0.04 0.08 0.13 0.18 0.25 0.33 0.42| 0.52| 0.63 0.85

(QFTVZT) E‘F(IvD)

80 | 0.05 009 015 022 031 041 052 065 0.78 0.95
(3) | 90 0.06 0.12| 0.21 0.31 0.44 059 0.75( 0.93 1.12 1.12
100 | 010 0.24 047 0.75 1.05 1.46 1.89 2.34 2.86 2.22

where Q(I,J) is a quality metric using the original

image! and the transcoded image ldeally, the quality Table |

metric would be a measure of the perceived quality THE SUB-ARRAY M%,awT,zﬁ’SOF’;'M'ZED FROM THE IMAGE

of the transcoded image alone (no reference _|magT AINING SET Dfﬁgi’fﬁﬁ;&IN]éE';’;?c;’:lf/fORRESPONDS o

quality assessment); however, it is more convenient to

use a measure of the distortion between the original

and transcoded images (full reference image quality

assessment). if M@?“@?MT ~ M@?‘,@?T,ET’ the final file size

_ _ _ . S(TU,QFr,z,)) can be radically different from

The optimal transcoded image quality for a given Iang(T(J’ QFr,z,)) since S(I) and S(J) may be

image constrained to devic® is then defined as: independent.

() = (LT (I, QF(I, D), (I, D)) An example of a sub-array af/ optimized over a
The transcoded image corresponding to the optimatge image training CorpusMgoéTw . is shown in
parameters is denoted: Table 1, with corresponding expected relative absolute
e " * error shown in Table Il. Throughout this paper, we
To(1) =T (I, QF(1, D), z(1, D)) present the case apF; = 80, because it is the most
The transcoding parametef®F7.(1, D) andz* (1, D) useful, as the majority of JPEG images on the Web
are not necessarily unique, and, amongst the parametaes compressed using a QF close to 80. Note that the
leading to equivalent resulting quality, the parametegsiantization scheme is not fixed by this algorithm, and

that minimize file size may be favored. we selected the matrix to b&0 x 10 for illustration
purposes. The transcodings were generated using the
[1l. PREDICTING FEASIBLE TRANSCODINGS ImageMagick command line tools, version 6.2.4 [19].

. K q hod . The scaling was performed using the Blackman filter,
In previous work, we presented methods to estimalfiosen for its spectral properties [20]. The use of a

the pompressed file _s_ize_of a ‘]_PEG image subject Qyifterent filter may lead to different numerical values
scaling z and a modification of its QF [15]. One form nieh are different from those in Table 1. This is

for this predictor is the following: acceptable as long as the same transcoding tool and

3(7(1’ QFT,ZT)) =S(I) M@/%@?T,ET fiItering parameters are used for training and then
operating the system.

where S(T(I,QFr,z,)) is the predicted compressed

file size of the transcoded image obtained by applying Taking the example in section VI, we are looking for

quality factor QFr and scaling parametet, to the solutions with a relative file size of 0.7 or less. Note

image I. M is a 3-D array, the indices of which arethat a portion of Table | is grayed, showimgnfeasible

the quantized original quality factorQF; = QJF(I), solutions, either because they yield a relative file greater

the desired output quality facto€@Fr, and desired than 0.7, or a resolution exceeding the terminal capabili-

scaling z,.. In our notation, the tilde ) denotes ties (more than 90%, in the example). Examining Table I,

quantized values. Suitable quantization allows the arrase note that various combinations @fF’r and z,. lead

to be searched efficiently while preventing contexb similar size predictions. For instana@/r = 90 and

dilution [15]. According to this schemd&/[@?D@?T’ZT z,. = 50% give a relative size prediction of 0.44, which

represents therelative size prediction (the ratio of is the same as that @@Fr = 60 and z, = 80%. The

output to input) for the various values 6JF;, QF, best quality must lie at the boundary of the grayed area,

and zr. It should be clear that for two different imagesince choosing lower QFs in a column or lower scaling

I and J with the same original quality factor, evenin a row can only further reduce quality.



Scaling, z1, %

Taroeinm convrmmir: S50 WL WD

Jrarrreded bape, apnima

QNFT 10%| 20%| 30%| 40%/| 50%/| 60%/| 70%| 80%| 90%| 100% PATEINTETT STLE JUETLT
10 112.9 69.63 48.5] 36.74 28.96 24.75 21.36 18.90 17.22 15.7 Y ol =, R, G AT
20 92.7% 52.81 35.78 26.6% 20.53 17.52 14.93 12.97 11.63 10.23 mage | o 08T Cualty-awans -
30 82.23 44.89 30.09 22.07 16.77 14.22 11.90 10.21 8.92| 7.55 e:-:fa'.c‘:-a g :
40 75.74 40.34 26.84 19.52 14.64 12.32 10.1§ 857 7.27| 6.45 R e
50 70.74 36.99 24.49 17.70 13.11 10.9¢ 8.88] 7.36| 6.04| 6.32 i i o
60 | 66.2834.1422.4816.1911.8] 9.84| 7.81| 6.36| 5.00| 2.40 L L i i
70 60.7% 30.69 20.14 14.46 10.4% 8.57| 6.61| 5.30| 4.05| 2.40 Duemprasmizn Compresian | |
80 54.08 26.83 17.56 12.64 8.97| 7.33| 5.55| 4.50| 3.53| 2.42 drigival aind sealing (7] {QFr ¥
90 44.4421.6914.6410.8] 7.89)| 6.72| 5.72| 5.22| 4.89| 2.88|  dwawel | | L me——
100 | 28.8418.5916.62 16.17 15.39 15.01 14.70 14.06 13.9( 8.39 =l O
and scaling | Iyh
i
Table Il | Diecompresstion | F—
THE EXPECTED RELATIVE ABSOLUTE ERROR W and scaling 140 | opepcemant
E[|S(Iout) = S(Tout)|/S(Tout)] X 100% FOR MATRIX Mgg. (@)
THE SHADED REGION CORRESPONDS TO EXPECTED
RELATIVE ABSOLUTE ERRORS OFL0%OR LESS Ferminal constrwing: £/, WD, 300 trmmcadid incas.
AT FLErT au gl
Y FATIS r'.- i, OF (LD
. SHARFIAIIR - nedmal | 5y, O L TR
Scaling,z1, % = Ry | e D -
QF ;| 10%[ 20%] 30%] 40%][ 50%| 60%] 70%] 80%| 90%[ 100% maga prachctun v
10 [245[253[26.0| 26.7| 27.5| 29.1| 30.6| 32.2[ 34.6| 37.9 P OF
20 24.9| 25.8| 27.1| 28.1| 29.0| 31.2| 32.9| 34.6| 36.9| 39.8 ) ¥ ' P —
30 25.2| 26.3| 27.8| 29.0| 29.9| 32.4| 33.9| 35.5| 37.4| 40.3 = - = = | [
40 | 25.4|26.7| 285/ 29.8| 30.6| 33.1| 34.3| 35.7| 37.0| 44.0 o enatay = OEY -
50 25.6| 27.0| 29.0| 30.4| 31.1| 33.7| 34.6| 35.6| 36.2| 46.4 fimiglnal =
60 25.8| 27.4| 29.6| 31.1| 31.7| 34.3| 34.8| 35.5| 35.2| 24.9 tewage £ Transcoding garation
70 26.0| 27.9| 30.5| 32.3| 32.6| 35.2| 35.4| 35.7| 34.8| 29.9
80 26.5| 28.8| 32.1| 34.3| 34.6| 37.6| 37.8| 38.8| 39.2| 33.1 (b)
90 27.4| 30.8| 36.2| 40.9| 43.6| 51.0| 57.4| 65.9| 75.7| 43.8
100 |32.4|54.4| 95.6| 148| 202| 272| 348| 413| 500| 238

Figure 1. Proposed quality-aware image transcoding systems: (a)
Optimal quality JPEG transcoding (OQJT) system (b) Proposed near-

Table 1l optimal quality JPEG transcoding (NOQJT) system.

THE STANDARD ERROR

(BI(5Uout) — 3(Tout))?) — E2[5(Lour) — §(Tour)]) * % 1000
FOR MATRIX Mg;. _ _
the deviceD—of the transcoded image.

We propose two quality-aware transcoding systems,
shown in Fig. 1. System (a) is designed to provide the
optimal solution in terms of quality for a given image

We saw in the previous section that many QF anRghijle system (b) uses prediction in order to provide a
scaling combinations could lead to similar file sizegear-optimal solution for a given image with a significant
We now need to find the combination that maximizegduction in transcoding computations. Note that the
quality. This requires that we define a quality metrigyo systems are different from the system presented

Q(I,J) to solve eq. (3). Many objective qualityin previous work [16], as will be made clear in the
measures can be used. In [21], the authors state thfowing pages.

JND, SSIM, IFC, and VIF perform much better than the

rest of the algorithms (such as the widely used PSNR); ) ) )

VIF being the best in this class. For convenience aht OPtimal Quality JPEG Transcoding (OQJT) System
without loss of generality, we will use the Structural In the system illustrated in Fig. 1(a), the set of
SIMilarity (SSIM) index proposed by Wangt al. to transcoding parameters leading to optimal quality
train the quality prediction [17]. More specifically, wefor a given image are determined. In this system,
are computing the Mean Structural SIMilarity (MSSIMRa quality-aware parameter selection module iterates
index to obtain the overall quality measure of an entiterough various parameterg){r and z,., constrained
image. Since the original imagé and the transcodedby image features and terminal characteristics) which
image J may differ in resolution after adaptationare provided to a transcoding engine. The transcoding
we will need to scale them to a common resolutioengine performs transcoding operations based on these
before estimating the quality of the resulting image. Wearameters. The original and transcoded images are
propose to scale to a specific resolution based on tien scaled to a common resolution in order to measure
viewing conditions—therefore largely determined bthe quality of the transcoded image. These operations

IV. QUALITY-AWARE TRANSCODING SYSTEMS



are performed in a quality assessment engine. The
quality metric is then provided to the quality-aware The viewing conditions, controlled by parameter
parameters selection module for determination af, play a major role in the user’'s appreciation of the
the optimal quality value given a certain parametéranscoded results. If the image might be transferred
resolution (0 x 10 in our case, i.e. 10 values @) later to another, more capable device (e.g. a PC), the
by 10 values ofz,). The quality-aware parametemresolution of the original image must be considered for
selection module ultimately returns, at the systesomparison, leading t€ase 1. Case 2 would be used
output, the optimal transcoding paramet€}$7:(1, D) when the image is viewed at a resolution between the
and z’(I,D), the optimal quality Q},(I), and the transcoded resolution and the original resolution: for
corresponding transcoded imagg;(/). Without any example, the device’s screen resolution, by zooming
further knowledge, a naive algorithm would test alhto the image, or the maximum resolution supported
possible combinations af)r and z,.. For instance, for by the device, possibly only accessible by using pan
a resolution of10 x 10, 100 transcodings would haveand zoom.Case 3 would be used when the image
to be performed. This number is excessive and can igeviewed at a resolution smaller than the transcoded
reduced significantly by exploiting several observationsesolution: for example, the device's screen resolution,
This will be discussed further in section V-C. by zooming out of an image transcoded to meet the
maximum resolution supported by the devi€Gase 4 is

In Fig. 1la), we note that both the transcoded ambt a case of interest, as it would find extremely small
original images are scaled prior to quality evaluatioimages (e.gl x 1 pixels) acceptable as long as they are
We define the quality metric comparing, for a viewsimilar to the original image scaled at such an extreme
ing condition parametet,,, the original image/ and resolution.
its transcoded versiod (using transcoding parameter

z =z,) as: Table IV shows the distribution of the average
5 MSSIM valuesM SSTM OF,.OF . 2" for QF; = 80,
Q. (I,J)=MSSIM <R(I7 z, ), R <J> V>> computed forCase 1 over the large image database

assembled in [15]. Table VI shows average MSSIM
where R(I,z) is an operator which decompressés gjyes forCases 2 and3 (combined), where the viewing
and scales it using scaling facter According to this -gnditions correspond to a maximum zoom of 90%
definition and to Fig. 1a), for the image resolutions tgf the size of the original picture. Table VIII shows
be equal, we must have: average MSSIM values for a maximum zoom 48f%.
The full details pertaining to the computation of these
tables are presented in previous work [16]. It is not
where z, <1, since we never want to increase theurprising to see that the MSSIM increases with an
resolution of the original image when comparing qualityncrease ofQF and z, except whernz = 100% where
and wherez, <1 is necessary to meet the terminabptimal quality is achieved fo) F,- = 80 (i.e. the same
constraints. We consider four cases of interest: QF as the input image), since no transcoding is required.

Casel: z, =1. We compare the images at the Tables V, VII, and IX show the variance for each case.
resolution of the original image with The variance is small enough in the tables to affirm that
zp =1/2,. the optimal quality solutions cannot be too far from those

obtained by using the tables of average MSSIM values.
Case 2: z, <z, <1. We compare the images at a

resolution between that of the original and that o ] )
of the transcoded image, with, = z, /2, > 1. B. Predicting the Optimal Transcoding Parameters
The system described in the previous subsection
Case 3: z, < z, < 1. We compare the images at aequires many transcoding operations per image in
resolution smaller than that of the transcodearder to determine the optimal solution using an exact
image, withz, =z, /z,. < 1. quality criterion that is evaluated at each tentative
transcoding. We are seeking a far more computing-
Case 4: z, = z, < 1. We compare the images at thefficient transcoding system providing near-optimal
resolution of the transcoded image, thereforguality performance.
z, = L.



Scaling,z7, % Scaling,z7, %
QFr | 10 | 20 | 30 | 40 | 50 | 60 | 70 | 80 | 90 | 100 QFr | 10| 20| 30| 40| 50| 60| 70 | 80 | 90 | 100
10 0.121 0.20 0.27] 0.33] 0.38 0.42 0.46/ 0.49 0.52] 0.55 10 59| 71| 84| 95 106 113 120 126 130 137
20 0.14 0.24 0.33 0.40 0.47| 0.52 0.56 0.59 0.63 0.66 20 62| 74| 85 94| 102 106 110 113 115 117
30 0.15 0.27] 0.36 0.44] 0.51] 0.56 0.61 0.65/ 0.68 0.73 30 64| 77| 88 95 100 102 104 105 105 105
40 0.16| 0.28 0.38 0.47| 0.54/ 0.59 0.64] 0.68/ 0.71 0.77 40 64| 79 90 96/ 100 102 104 103 102 101
50 0.17) 0.29 0.40 0.49 0.56/ 0.62 0.67| 0.71 0.74/ 0.79 50 67| 81 91 96/ 97| 97| 96| 93 90| 94
60 0.17| 0.31] 0.42 0.51] 0.58 0.64 0.69 0.74f 0.77| 0.86 60 69| 83| 92| 95 95 93| 91 87| 83 54
70 0.18 0.32 0.43 0.53 0.60 0.66 0.71 0.76) 0.79 0.92 70 69| 85 96| 98 97| 95 92| 87| 83 58
80 0.19 0.34 0.46 0.56| 0.64| 0.71) 0.76 0.80| 0.83 1.00 80 74| 89 97| 96| 90| 84| 77| 71 64 9
90 0.21y 0.37] 0.50 0.61 0.70, 0.76/ 0.81 0.85 0.87| 0.98 90 79| 95| 100 95 84| 74| 66| 60 53 13
100 0.23 0.42 0.57| 0.69 0.78 0.83 0.88 0.91 0.93 0.99 100 87| 102 101 89 73 60| 48 41 37 9
Table IV Table VII
THE SUB-ARRAY MSSIMZV §0,0F 27 COMPUTED FORCase 1 THE STANDARD DEVIATION x 1000 OF SUB-ARRAY
(2, = 100%) USING THE IMAGE TRAINING SET FROM[15]. MSSIM, g G, 2, COMPUTED FORCases 2 AND 3 (WITH
SHADING CORRESPONDS TO THE EXAMPLE IN SECTION/I. z, = 90%) USING THE TRAINING SET FROM[15]. SHADING

CORRESPONDS TO THE EXAMPLE IN SECTION/I.

Scaling,z, %

QFr | 10| 20| 30| 40| 50| 60| 70| 80 | 90 | 100 Scaling. 5. %
10 59| 70| 81 91| 100 107 113 119 124 131 — 9,27,
20 62| 73 84 92 98 103 106 109 111 113 QFp | 10 | 20 | 30 | 40 | 50 | 60 | 70 | 80 | 90 | 100
30 64 77 871 94/ 98 101 102 103 103 103 10 0.25 0.43 0.55 0.62 0.69 0.73 0.76/ 0.79 0.80 0.82
40 64| 78 89 96 100 101 102 101 101 100 20 0.30 0.52 0.65 0.73 0.79 0.82 0.85 0.87] 0.88 0.89
50 67/ 81 91 96 98 97 96 93 91 94 30 0.33] 0.56 0.69 0.77] 0.83] 0.86 0.89 0.90] 0.91 0.92
60 68 831 92| 97/ 97| 95 92| 88 84 52 40 0.35 0.58 0.72 0.80 0.85 0.88 0.90 0.92] 0.92 0.94
70 69 85 96| 100 99| 97| 93 89| 85 57 50 0.36 0.61] 0.74 0.82 0.87| 0.90 0.92 0.93 0.94 0.95
80 731 90| 99 100 95| 89 82| 74/ 69 10 60 0.38 0.63 0.76/ 0.84| 0.89] 0.92 0.93 0.94| 0.95 0.96
90 78] 96| 104 101 92| 83 73 65 60 13 70 0.39 0.65 0.78 0.86 0.90 0.93 0.94 0.95 0.95 0.97|
100 87| 105 109 101 88 75 631 53 45 9 80 0.42 0.68 0.81 0.89 0.93 0.95 0.96/ 0.96/ 0.97, 1.00
90 0.45 0.72 0.85 0.92 0.95 0.96 0.97| 0.97] 0.98 0.99
100 0.49 0.78 0.91 0.97, 0.98 0.98 0.99 0.99 0.99 1.00
Table V

THE STANDARD DEVIATION x 1000 OF SUB-ARRAY
MSSIM , & 5. s, COMPUTED FORCase 1 (z,, = 100%)
USING THE IMAGE TRAINING SET FROM[15]. SHADING
CORRESPONDS TO THE EXAMPLE IN SECTIOVI.

Table VIII
THE SUB-ARRAY MSSIM & 5%, ;. COMPUTED FORCases 2
v »5U, T>*T

AND 3 (WITH z,, = 40%) USING THE TRAINING SET FROM[15].
SHADING CORRESPONDS TO THE EXAMPLE IN SECTION/I.

Scaling,z1, %

QFr | 10 | 20 | 30 | 40 | 50 | 60 | 70 | 80 | 90 | 100 Scaling, zr, %
10 0.13 0.22 0.30 0.36 0.42 0.46 0.50 0.53 0.55 0.59 @T:T 10| 20| 30| 40| 50| 60| 70| 80| 90 | 100
20 0.15 0.27] 0.36 0.44] 0.51] 0.56 0.60, 0.64f 0.66/ 0.70 10 74193 [ 110 120 125 126 126 125 123 121
30 0.17) 0.29 0.40 0.49 0.56/ 0.61] 0.66/ 0.69 0.72 0.76 20 77 | 89| 98 103 103 10n 98/ 95 91| 88
40 0.17| 0.31] 0.42 0.51] 0.58 0.64 0.68 0.72] 0.75 0.80 30 79| 88| 92| 93 91/ 87 83 79 76 72
50 0.18 0.32 0.44 0.53 0.61] 0.67| 0.71) 0.75 0.78 0.82 40 81| 89| 92| 91/ 88 85 81 76 74/ 68
60 0.19 0.34/ 0.46 0.56 0.63 0.69 0.74 0.78 0.81 0.88 50 82| 87| 86| 82 76 72| 68 62 60 56
70 0.20 0.35 0.48 0.57| 0.65 0.71) 0.76/ 0.80| 0.83 0.93 60 84| 86| 82 771 700 65/ 59 54| 51 36
80 0.21 0.38 0.51 0.61] 0.69 0.75 0.80 0.84f 0.87 1.00 70 86| 88| 85 78 71 67 62 58 56/ 43
90 0.23 0.41] 0.55 0.66 0.75 0.81 0.85 0.88 0.91 0.98 80 89| 84| 75 64| 53 48 41 37 33 3
100 0.25 0.46/ 0.62 0.74 0.83 0.88 0.92 0.94/ 0.96/ 0.99 90 94| 81| 67 53 40 35 31 28 25 6
100 99 | 72| 45 29| 19| 20| 17 17| 15 4
Table VI
THE SUB-ARRAY MSSIMZV.%,Q”FT.ZT COMPUTED FORCases 2 Table IX
AND 3 (WITH z,, = 90%) USING THE TRAINING SET FROM[15]. THE STANDARD DEVIATION x 1000 OF SUB-ARRAY
SHADING CORRESPONDS TO THE EXAMPLE IN SECTION/I. MSSIM, & g, zp COMPUTED FORCases 2 AND 3 (WITH

2z, = 40%) USING THE TRAINING SET FROM[15]. SHADING
CORRESPONDS TO THE EXAMPLE IN SECTION/I.

Since we have shown that we can obtain a good
prediction of the relative file size of an image subject
to a change of quality factor and scaling parametemsachine learning techniques can be used to predict the
(see Table | with the relative absolute error presenteg@timal set of parameters for given maximum relative file
in Table Il and the standard error in Table Ill) as well asize s,,,. (I, D) and viewing conditiorz,, (I, D) where
the corresponding predicted MSSIM values (as shownin (I, D) is the viewing conditionz, given imagel
Tables IV-IX) it seems reasonable to think that the sana@ed deviceD. We havez,, (I, D) < zpyq..(I, D), where



Viewing condition, z,,, %
Smaes | 10 ] 20 [ 30 | 40 | 50 | 60 | 70 | 80 | 90 | 100
0.05 | 73.7] 42.2] 27.1 245 23.7 234 23.4 23.4 234 234
(I, D) = mi W(D) H(D) (4) | 010 | 942 747 48.4 527 274 256 251 248 24.7 247
“max = min W) H() 0.15 | 98.6/ 87.9 71.8 50.9 37.9 33.8 31.6 30.4 30.0 29.9
0.20 | 99.2| 91.4| 83.3 68.4 51.0 42.4 38.4 36.7 35.3 34.8
We propose to set the viewing conditions to the030 | 99.2 98.2 90.0 835 73.1 618 52.0 47.1 44.2 425
€ prop . 9 : 0.40 | 99.2| 99.7) 92.2| 89.7 82.2 74.4 653 57.1| 52.3 48.7
maximum resolution supported by the terminal or thepso | 99.2 99.8 96.6 90.6 89.3 83.7 76.3 68.0 60.9 51.8
original size of the image, whichever is the smallest.060 | 992 99.8 99.2 92.7 90.0 88.5 83.0 76.5 69.6 59.7
0.70 | 99.2| 99.8| 99.9 95.5 90.6 90.0 87.4 81.2 76.7 67.1
Therefore, we propose, (I, D) = zmaz(1, D). 0.80 | 99.2 99.8 99.9 98.3 92.5 90.2| 89.9 86.4 81.4 65.5
0.90 | 99.2| 99.8 99.9 99.6 95.4 90.8 90.1 89.0 83.0 70.8
1.00 | 99.2| 99.8 99.9 99.9 97.8 92.5 90.3 89.9 88.1 79.8

Zmaz (I, D), the maximum scaling factor, is defined as:

Using the image training sét described in [15], we
can compute, for every combination ef,..(I, D) and Table X

z, (I, D), the average optimal quality factor and scalingvERAGE OPTIMAL QUALITY FACTOR QF. FOR QF(I) = 80, AS
values obtained by using the optimal quality system i FUNCTION OF Smaz AND 2, USING THE IMAGE TRAINING SET

FROM[15
Fig. 1a). Such values are computed as: [15].
(QF;E* ) = Viewing condition, z,, , %
Smax | 10 | 20 | 30 | 40 | 50 | 60 | 70 | 80 | 90 | 100
T Z are max J,T(J,QF, z 0.05 | 10.0] 18.2] 22.7| 244 25.2 254 254 254 254 25.4
Tor " %FZ) <, ( (7. QF;2) 0.10 | 10.0 19.9 29.0 35.4 39.5 41.5 42.2| 42.5 42.6) 42.7
J € Tor 0.15 | 10.0 20.0 29.9 39.0 45.7 48.8 51.6 53.4 54.0 54.2

(5) 0.20 10.0] 20.0f 29.9 39.5 48.5 53.4 56.7| 59.0 61.2| 62.2
0.30 10.00 20.0] 29.9 39.9 49.6 57.6 63.9 67.9 71.1 73.2

SUbJeCt to the simultaneous constraints 0.40 10.0 20.0 29.8 39.9] 49.5 58.6 67.1] 73.4 77.5 80.8
0.50 10.0] 20.0, 29.8 39.5 49.8 56.7| 65.7] 74.3 80.9 88.5

2 < Zv(I D) 0.60 10.0] 20.0, 29.8 38.60 49.9 57.4/ 66.7] 73.9 81.8 90.6

- ’ 0.70 10.0] 20.0, 29.9 38.1] 49.5 59.8 64.3 77.6 82.6 90.2

S(T(J, QF‘7 Z)) < Smax(Ia D) 0.80 10.0f 20.0, 30.0 38.2] 48.1] 59.7| 68.5 73.6 85.1] 97.2

0.90 | 10.0 20.0{ 30.0 38.9 46.6 59.0 69.7| 73.7 85.6 99.9
whereTor, = {J € T | QF; = QF;}, the subset of all | 100 | 10.0/ 200 30.0 39.6 46| 57.0 693 78.8 818 100
images in the training set with the same original QH as

Table XI
o AVERAGE OPTIMAL SCALING z7 (IN %), FORQF () = 80, AS A
It is important to note that the values used for COMpPUt-FUNCTION OF 5,02 AND z,, USING THE IMAGE TRAINING SET

ing eq. (5) are optimal values obtained from the OQJT FROM [15].
system (Fig. 1a)) for each image in the training set.
Therefore, for each image in the training set and set of o iy
. . . . . . .. Viewing condition, z,,, %
constraints (relative file size and viewing condition), thes,,,. (70 [ 20 [ 30 [ 40 | 50 | 60 | 70 | 80 | 90 | 100

QFr and z, parameters leading to the highest quality9.05 | 0.15 0.201 0.220 0.221 0.22 0.22 0.22 0.22 0.22 0.22
0.10 | 0.24/ 0.36 0.42| 0.44 0.45 0.45 0.45 0.45 0.45 0.45

value are determined. Tables X and Xl show the valueg 1s | 0.23 036 0.44 0.48 050 051 051 051 051 051

of QF; and g;: as a function Ofsmaw and 2y, for 0.20 0.25 0.41] 0.52 0.58 0.61] 0.61 0.62] 0.62 0.62 0.62
[ ) 30 | 025 045 055 063 0.67 0.69 0.70 0.70 071 071
our training set. They correspond to the centroids 040 | 025 046 056 066 0.70 0.73 0.75 0.76/ 0.76 0.76

the optimal solutions in the space of tligf” and z | 050 | 0.25 0.46 0.59 0.66 0.74 0.76 0.78 0.79 0.80 0.81
) 0.60 | 0.25/ 0.46| 0.61 0.67 0.75 0.79 0.81 0.81] 0.82 0.84
parameters. Table XIl shows the predicted MSSIM score 7o | 025 046 062 069 075 081 082 084 084 086

expressed as a function ef,,, and Zy, . Tables X, Xl, 0.80 0.25/ 0.46/ 0.62 0.71 0.75 0.81 0.85 0.85 0.86 0.89
d Xl b df . densi 0.90 | 0.25/ 0.46| 0.62 0.73 0.76| 0.81 0.85 0.86 0.87| 0.94
an can be computed for any given density £gf..., 1.00 | 0.25| 0.46 0.62] 0.74 0.78 0.81 0.85 0.88 0.89 0.99

but only a few are shown here; the variable increments
of sz in the tables will be used with the examples Table XII
presented in SECtiOﬂ VI. AVERAGE MSSIM oF OPA'I;IMAL SOLUTIONS OBTAINED FROM
SYSTEMOQJT (USED AS Q7)) USING THE IMAGE TRAINING SET
FROM [15].

C. Proposed near-optimal quality JPEG transcoding
(NOQJT) system
We propose to use the system illustrated in Fig. 1b).

The system exploits the results described in the previo®sp 1: For given imagel and device D, compute
subsection to estimate the optimal set of transcoding Smaz = Smaz({,D) using eq. (2) and
parameters in an optim&F and z prediction module. z, = 2, (I, D) = zmqez(I, D) using eq. (4).
The system works as follows:

Step 2: Obtain QF 7 (Smazz,) and Z5(smax,z,) from



Tables X and Xl respectively—let us assumguantization to reduce memory requirements. Finally, the
that QF(I) = 80 to match the tables. Setsecond system we propose in this paper, the NOQJT
QFr = QF1(Smazr2,) and z, = Zh(smas, System, uses prediction to directly estimate the optimal
z,). Note that we take the nearest smallgrarameter§)F, andz} while maximizing the perceived
values in the tables if the desiregd,,, andz, quality at the same time as satisfying the constraints
are not present. of maximal file size §,...) and viewing conditions
(z,)- In the next section, section V, we show that the
Sep 3: Transcode the image with the quality factor anperformance of the proposed NOQJT system is very
scaling parameterQ F'- and z,. respectively.  good; we get near-optimal MSSIM values (i.e. close
to that of the OQJT system) with significantly reduced
Sep 4: If the file size of the transcoded image is tosomplexity.
large (i.e. if s(I,QFr,z,.) > Smaz), identify
the quality factor and scaling paramete€si
andz,.) corresponding to the next smaller value
of s;ae in the Tables X and XI and go to step
3 (actually try a smaller value of,,,, from the
tables than previously tried until a different seﬁl
of QFr and z, is obtained). Otherwise go to
step 5.

V. SIMULATION RESULTS

In this section, we compare the OQJT system with the
OQJT system with respect to quality (using SSIM),
computation complexity, and failure rate. Again, we
concentrate on the case wheds~(I) = 80. The tables
will be shown fors,;,,., from 0.1 to 1.0 by steps of 0.1.
However, in our simulations, we used tables With,.
from 0.05 to 0.1 by steps of 0.025, and from 0.1 to 1.0
by steps of 0.05. Even f@W*T andz’ tables (like those

Xf Tables X and Xl), we used the same resolution.

Sep 5: Return near-optimal parametes, (I, D) =
QFr andz3.(1, D) = z,, the transcoded image
using these parametéf’%([) =T(I,QFr,z,),
and predicted transcoded image qualit
Q5 (I) = Q. (I,75(I)) (using Table XII).

The NOQJT system differs from the OQJT systems
in one major way: the optimal transcoding parameteps Quality using SSIM
are predicted rather than searched iteratively. However,
in both systems, the transcoded image is alwaysFor each set of constraints,... and z,, we
validated in order to ensure that it meets the transcoditignscoded each image of the test set described in [15]
constraints. to meet those constraints. The average MSSIM values

(MSSIMSC:SSEV) obtained using the OQJT system are

The two systems presented in this paper differ froprovided in Table XIII. For the same set of constraints
those previously presented. For example, the first systamd for the same test images, we transcoded the
we presented was capable of predicting the transcodethges with the proposed NOQJT system. The average
file size only, relying on quantization to speed up compMSSIM values obtained are provided in Table XIV.
tations, as well as to minimize memory usage [15]. ThHéote that, for convenience, the values @Qff' and z
first of the systems presented in this paper, the OQud%ed for transcoding were rounded to the nearest value
system, is capable of yielding the optimal decision for @rresponding to the resolution of our transcoded image
given picture, but at a greater cost as it explores the matabase (we used a parameters resolutiod of 10, as
rameter space without prediction. The system presentadiable I). The average error (in %) and the variance of
in [16] predicts the optimal transcoding paramet@is;,  the average error between the two systems are presented
and z* that maximize quality (as predicted by MSSIMn Table XV and Table XVI. The average error is
or PSNR). This system uses a version of eq. (5) whardatively small throughout the table, but increases as
the constraints are also predicted using the methtige value ofs,,.,. decreases (i.e. as we move further
presented in [15]. The parameters search is iterativeaway from the image’s initial file size). Since, for any
the set of predicted feasible solutions. We also showgiven test image, the NOQJT solution’s MSSIM can
that while the system behaves differently depending @t best equal that of the OQJT solution, the average
whether PSNR or MSSIM is used as a quality metri@bsolute MSSIM error over each image of the test set
it takes reasonable decisions in both cases. The sysexpals the error between the average MSSIM of both
in [16] (as in [15]) makes extensive use of parametsystems. Indeed, we have:



Viewing condition, z,,, % Viewing condition, z,,, %
Smaz | 10 ] 20 [ 30 [ 40 [ 50 [ 60 [ 70 | 80 [ 90 [ 100 Smaz [ 10 [ 20 [ 30 [ 40 [ 50 [ 60 | 70 [ 80 [ 90 | 100
0.1 0.24] 0.37] 0.42 0.44 0.45 0.45 0.46 0.46 0.46) 0.46 0.1 0.23] 0.33 0.35 0.36 0.3 0.37] 0.37] 0.37 0.37] 0.37
0.2 0.25 0.42 0.53 0.58 0.61 0.62 0.62 0.63 0.63 0.63 0.2 0.25 0.41) 0.52 0.56 0.56/ 0.60/ 0.56 0.57| 0.57| 0.57|
0.3 0.25( 0.45 0.56 0.63 0.68 0.70| 0.71 0.71 0.71) 0.71 0.3 0.25/ 0.44/ 0.55 0.63 0.67| 0.68 0.69 0.68 0.68 0.67
0.4 0.25( 0.46/ 0.57 0.66 0.71) 0.74 0.75 0.76 0.76/ 0.77 0.4 0.25( 0.46/ 0.56 0.66 0.70 0.73| 0.73 0.75 0.74 0.75
0.5 0.25 0.46/ 0.59| 0.67| 0.75 0.76/ 0.78 0.79 0.80 0.81 0.5 0.25 0.46/ 0.58 0.66 0.74f 0.76 0.77| 0.79] 0.79 0.80
0.6 0.25( 0.46/ 0.62] 0.67| 0.75 0.79 0.81] 0.82 0.83 0.84 0.6 0.25/ 0.46/ 0.61] 0.67| 0.75 0.78 0.80 0.81 0.82 0.84
0.7 0.25 0.46) 0.62) 0.69 0.75 0.81 0.82 0.84 0.85 0.86 0.7 0.25 0.46) 0.62 0.68 0.75 0.80 0.82 0.84 0.84 0.86
0.8 0.25 0.46/ 0.62) 0.71 0.76/ 0.81 0.85 0.86/ 0.87| 0.89 0.8 0.25 0.46/ 0.62 0.70 0.75 0.81 0.84 0.85 0.86 0.89
0.9 0.25( 0.46/ 0.62) 0.73 0.77| 0.81] 0.85 0.87 0.87| 0.94 0.9 0.25( 0.46/ 0.62 0.72 0.76/ 0.81] 0.85 0.86 0.87| 0.94
1.0 0.25 0.46/ 0.62] 0.74 0.78 0.81 0.85 0.88 0.89 1.00 1.0 0.25 0.46/ 0.62 0.73 0.77] 0.81 0.85 0.88 0.88 0.99

Tab(l)%2 Pl Tat&IgQ%ITV
AVERAGE MSSIM (MSSIM,, ' . ) OF OPTIMAL SOLUTIONS  AVERAGE MSSIM (MSSIM, . ) OF SOLUTIONS OBTAINED
OBTAINED WITH THE OQJTSYSTEM USING THE IMAGE TEST SET WITH THE NOQJTSYSTEM USING THE IMAGE TEST SET
FROM [15]). FROM [15].

Viewing condition, z,,, %

Smaz | 10 20 | 30 | 40 | 50 | 60 | 70 | 80 | 90 | 100
0.1 1.33 | 3.00] 3.45 4.70 551 5.85 5.93 5.94 5.95 5.95
Z’QOQJT QNOQJT( )) 0.2 0.03 | 0.71 2.11] 1.83 2.34 3.94 4.41] 4.63 4.80 4.84
|T\ Smaz»Z Smaz %y 0.3 0.02 | 0.01] 0.15 1.94 1.88 1.40| 3.97| 4.26 4.46/ 2.70
IeT 0.4 0.02 | 0.00, 1.11] 0.06 1.10 1.99 0.86 2.09 3.61 2.80
0.5 0.02 | 0.00, 0.03 0.23 0.04 0.76] 0.72| 2.94 2.14 2.90
ZQSOmQa‘lT ZQIS\LSZ?JT (6) 0.6 0.02 | 0.00, 0.03 0.93 0.06 0.35 0.61 1.42 2.24| 3.15
!TI et v IT\ T ' 0.7 0.02 | 0.000 0.02 0.46 0.22| 0.07] 1.33 0.35 0.80 3.16
OQJT NOQIT 0.8 0.02 | 0.00, 0.01] 0.46 0.65 0.07| 0.05 0.51 2.61 5.66
— MSSIM, _ MSSIM 0.9 0.02 | 0.00, 0.01 0.33 0.78 0.21] 0.05 1.24 3.28 1.13
MSSIM 2y S5 SmawsZV 1.0 0.02 | 0.000 0.00 0.19 1.06| 0.54 0.09 0.05 0.71 0.00
where T represents the image test s@smmzv (1) = Table XV
* . aple

QZ (I T(I Q Smaz 2y, (I) zsm‘“ 2y ( ))) the qua“ty Of AVERAGE ERRORX 100 BETWEEN THE AVERAGEMSSIMS OF THE

the optimal solution giver, Sma:c and z, (for a given OQJTAND NOQJITSYSTEMS(SAME AS THE AVERAGE
method). ABSOLUTE MSSIM ERROR OVER EACH IMAGE USING THE IMAGE

TEST SET FROM[15].

Not only the expected resulting quality from the

two systems are closely matched (and _accordlrjgly Viewing condition,,,, %

the expected difference small), the respective rankings,.. [10 [ 20 [ 30 | 40 | 50 | 60 | 70 | 80 | 90 | 100
f solutions from h ms are highl rrel 01 1.62 | 3.53 4.05 4.86] 4.92 509 5.19 5.20 523 5.23
of S0 qto s from bot _syste s are highly co eqtedo_z 0.49 | 1.67] 2.60 2.91 3.38 4.13 3.31 3.44 3.61 3.67
Analysing the correlation between solution orderingso.s 0.43 | 0.33 0.81 2.70 3.05 2.48 3.38 3.65 3.85 4.26
from best to worst given the constraints in both system§4 | 042 | 010 2.29 055 2.35 333 2.19 244 2.55 3.48
. . 0.5 0.42 | 0.10] 0.27] 1.00 0.56/ 1.75 2.69 3.58 2.61 3.46
shows a very high rank correllation. The averageys 0.42 | 010 0.32 1.99 064 093 1.40 1.99 3.55 3.43

Spearmarp rank Correlation Coefﬁcient is found to be 0.7 0.42 | 0.10] 0.28 1.35 1.02 0.66 2.48 1.22 1.73 5.24

X L 0.8 0.42 | 0.10 0.24 1.40 1.60 0.63 0.51 1.33 1.91 5.41
p ~ 0.999661, a result of high significance [22]. A| o9 0.42 | 0.10 0.24/ 1.27] 1.67] 1.05 0.58 2.04 1.91 3.99
Studentt-distribution test estimates the probability that1.0 | 042 | 0.10 0.08 1.03 2.09 1.44 0.68 0.58 1.59 0.05

both rankings are the same as being essentially 1.

Table XVI
i i AVERAGE STANDARD DEVIATION OF ERRORX 100 BETWEEN THE
We also note that the system is capable of accountingerace MSSIMs oF THEOQJTAND NOQJTSYSTEMS(SAME

for blocking artifacts, favoring smaller pictures withAS THE AVERAGE ABSOLUTEMSSIM ERROR OVER EACH IMAGH
higher QFs having better MSSIM, over larger pictures, USING THE IMAGE TEST SET FROM15],

more crudely compressed pictures, as revealed in Ta-

ble XI. For example, taking Table XI, with, = 80%,
we see that the optimal scaling goes from78.8% to

42.5% as the maximum allowable relative file size goesr a quantized parameter grid, where parameters are
from 1.0 t0 0.1. (quantized against &0 x 10 grid. For a given original

QF, solving eq. (3) using the quantized tables means
that QF and z; are approximated by)F% and z%,
B. The Effects of Quantization obtained using quantized quality and scaling factors—for
In our simulation, for each image from the trainingxample, 76.2 would become 80. Since prediction is only
set, the resulting MSSIM and file size were obtainealailable through the quantized parameté&s};. andz}.
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. . . Viewing condition, z,, , %
are necessarily rounded to the nearest available solution. 10720 T30 T 40 950 50 ZV70° 80 790 | 100

Our simulations show that if truncation is used, theO-% iég ig; ﬂg i.gg ig igg igg 133 152 133
size and quality predictions are necessarily pessimisti§s | 1og 129 103 104 109 143 116 174 174 199
and fewer retries are made as file size prediction isg.g }.88 i.gi i.gg i.gi igg i'gi igg _jI.(l)g ifg Hg
systematically undershot. If rounding is used, simulayys | 100 100 124 1.00 1.02 177 110 104 106 108
tions show that more accurate, yet possibly optimistic0.7 | 1.00 1.00 1.08 1.62 1.0l 1.08 1.05 1.08 1.15 1.07
quality prediction is achieved, although this may results | Too 10 109 16 179 101 103 104 101 Lo2
in more retries as the prediction may overshoot file size1.0 1.00 1.00| 1.00 1.36 1.80 1.00 1.02 1.19 1.19 1.01
However, it is preferable to use rounding rather than
truncation, as rounding enhances user experience, even Table XVII

VERAGE NUMBER OF TRANSCODING OPERATIONS PER IMAGE
at the cost of a few retries. WITH THE PROPOSEDNOQJTSYSTEM USING THE IMAGE TEST

SET FROM[15].

C. Computational Complexity

. . . Viewing condition,z,,, %
Finding the set of parameters leading to optimal, ~— —5—>5150T20 150 [ 60 170 [ 80 90 T 100

quality in the OQJT system can be compared to t ®1 002 0.02 002 002 0.02 002 002 0.02 0.02 002
search for optimal motion vectors performed in videg?2=1-0] 0.0 0.00 0.00 0.09 0.00 0.00 0.00 0.00 0.00 0.09
coding [23]. We have a grid size df x N points on Table XVIII

which a quality metric needs to be optimized assumINg TraNSCODING FAILURE RATE(IN %) WITH THE PROPOSED
that the function is convex or near-convex. If we set NOQJTSYSTEM USING THE IMAGE TEST SET FROM15].
the MSSIM of an image to-1 (which is the worst

possible score) when the device constraints are not met,

we have such a situation; that is, laF and z values

lead to small MSSIM values, while larg@F and » Parameters from the NOQJT framework can be adapted
values may not meet the device constraints. Therefdfs different application scenarios, providing various
the optimal solutions lie somewhere in between. AgPmMpromises between optimality of the visual quality
exhaustive search method evaluatds x N values and computational complexity (e.g. we could increase
(i.e. N? transcoding operations in our case). The molte average visual quality with an increase of average
efficient methods (excluding predictive methods sud@®mplexity by performing aeil on theQF'. in Table X

as PMVFAST and EPZS that use information frornstead of rounding).

surrounding motion blocks, which does not apply to

our case) have a complexity of the order Io&(N). D. Failure Rate

For instance, the Three Step Search algorithm evaluatei\n important aspect of a transcoding system to study

L+ 3> 8 = 25 points [24], [25]. If the number of points, is the failure rate, i.e. how often the system cannot find a

to be examined can be reduced by excluding S'Olunosolutlon to the constraints. We observe from Table XVIII
that exceed the device’s resolution, the number of steps
at the system only fails for cases whesg,, = 0.1,

in the search algorithm will nonetheless increase WIWhICh is the smallest value shown in the table. We

parameter resolution, while a finer grid will require Rave this problem because the parameter set used in
deeper search. . : S .

our simulations is limited to scaling factors ®6% or
more. In practice, this could be easily solved by reducing
e scaling values until the constraints are met, leading

By contrast, the proposed NOQJT system requireiﬁ
on average, fewer than two transcoding operations R&"no failure at all. However, it can be argued that, in

ITe?(glte gf ;ZOVI\\/I%m J‘;able ifa\r/r:l Iln'ﬁekr;stl?gly r(t)r\:\? \?gr such a situation, the right thing to do is to fail since the
piextty QJT sys S y 9 Yreturned image may be of no use as its resolution could

slowly as the parameters resolution increases (as, S0t00 small. For instance, it may not make much sense

average, very few transcodings will be performed), whi . .
the complexity of the OQJT system will increase as th% reduce a 640x480 image to below 64x48 to fit a very

Shall file size constraint.
parameter resolutions increases. This means an important
speedup for the NOQJT system, which will be at least
10 times as fast as the OQJT system. The maximum
number of transcoding operations (i.e. in the worst caseConsider a device witls (D) = 30500, W(D) = 640,

scenario) depends on the grid size. Grid size and otl#é(D) = 480, and an image, Lena, with(I) = 43266,

VI. A TRANSCODING EXAMPLE
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Scaling,z.,., %

W(I) =512, H(I) = 512 and QF(I) = 80. QFy [1T0 20 [ 30 [ 40 [ 50 | 60 [ 70 [ 80 [ 90 | 100
10 | 0.01 0.02 0.03 0.05 0.07] 0.09 0.11 0.13 0.15 0.18
) . 20 | 0.01 0.03 0.05 0.07 0.10| 0.14 0.17 0.21] 0.25 0.29
Step 1: We computes g, = mm(30500/43266alg ~ 0.7 |3 | 002 004 007 010 013 018 023 0.8 033 0.39
and z, = zpas(I,D) = min ($3,280.1) ~ |40 | 002 004 008 0.12 016 022 0.27 0.33 0.40 048

90%. 50 | 002 005 0.09 0.13 0.18 0.25 0.31 0.39 0.46 0.51
60 | 002 0.05 0.10 0.15 0.21] 0.28 0.36 0.44 054 0.73

70 | 0.03 0.06 0.11] 0.18 0.25 0.34 0.43 0.53 0.65 0.89
80 | 003 008 0.14 0.22 031 0.42 054 0.68 0.82 1.00

Sep 2: Using Table X, we find thatQFr = | g5 | o4 011 0.20 031 044 062 079 0.99 1.20 1.8
QF;(0.7,0.9) = 76.7, which we quantize | 100 | 0.08 0.24 047/ 0.79 1.15 1.63 2.10 2.63 3.23 2.48
to 80. Using Table XI, we find that o
R _ ; Table XIX
“r N zT(0'7’0'9) = 82.6%, which we ACTUAL RELATIVE FILE SIZES FORLENA, QF; = 80, AS A
quantize to30%. FUNCTION OFQFr AND z,..

Sep 3. Transcode the image with the quality factor and
scaling parameterg)F'; and z,. respectively.

After transcoding, we obtain an image Withhe (.58 resulting from the NOQJT system. However,
s(1,80,80%) = 0.68 (see Table XIX). we can observe that, as shown in figures Il and VII,
the system becomes less precise as the target relative
Sep 4: Since the transcoded image meets the target fije sizes become smaller. Still, we managed to obtain a
size (0.68< 0.70), we go to step 5. good solution in 2 transcodings only.

Step 5: Return near-optimal parametefd' (I, D) =  Using the same size contraints, let us compare with a
80 and 23:(1, D) = 80%, the transcoded imagesimple algorithm that first scales to the viewing con-
using the parameterg;(I) = 7(1,80,80%), ditions then lowersQFr until the target size is met.
and predicted transcoded image qualitgor the first example, we have, = z, = 90% and
opl) = Q. (I,75(I)) = 084 from g =~ — 0.7 Using Table XIX, we can observe that
Table XII (with z, = 0.9) while the true image the simple algorithm find€)F; = 70, resulting in a
quality from Table XX is0.86 (a ~ 2% error). MSSIM of 0.85 instead 0f0.86 as found by the OQJT

and NOQJT algorithms. It also managed to perform this
Looking at Tables XIX and XX, the actual resultsyith a single trancoding (but it is higher in general).
from transcodings on the Lena image, the OQ¥or the second example, we have = z, = 90% and
system would select, after several transcoding itera,tioggm = 0.2. After 7 transcodings, the algorithm will

QF;(I,D) = 80 and z; (I, D) = 80% leading to a find the feasible solution, = 90% and QF; = 10

relative file size 00.68 and a quality ofQ7,(I) = 0.86. |eading tos(I, 10,90%) = 0.15 and an MSSIM 0f0.53

Therefore, for Lena under these constraints, we obtain@g}me we have.58 for NOQJT and).63 for OQJT). Not

an image with optimal quality with NOQJT with agnly this simple algorithm yields an inferior quality to

single transcoding operation. compared with NOQJT but the computational complex-

_ ity is significantly higher. This shows how resilient the
Let us consider a second, more exiremMROQJT system is, and how it compares favorably with
example, the results of which are shown iRoth the OQJT system and a naive approach wherein

Fig. 2. Let us keep the viewing conditiongy the QF is adapted after an initial scaling to the

z, = 90%, but set the maximum relative filesiz&jewing conditions. The NOQJT system can provide

t0 smax = 0.2. Reapplying the procedure, we find;isyal results close to those of the OQJT system with

* % ~ - - - - . -
that QFy = 353 ~ 40 and zp = 61.2% =~ 60%. mpressive improvement in computational complexity.
We gets(7,40,60%) = 0.22 > 0.2, which is not an

acceptable solution, and the algorithm retries different
parameters. Reducing,,.. to 0.15, the tables yield
QFr = 30.0, z, = 54.0% =~ 50%. The new relative In this paper, we analyzed the impact of various
size iss(7,30,50) = 0/13* which is now an acceptablecombinations of QF and scaling parameter values on
solution. Therefore,QF, = 30, 25 = 50% and the quality of transcoded images. Using SSIM, we
Q*D = 0.51. After transcoding we find tha@, = 0.58. showed how quality varies with quality factapFr

The OQJT system find§)F; = 50 and z, = 50% and scalingz, for various viewing conditions. We
yielding an image quality 0of).63, which is close to also proposed two quality-aware transcoding systems:

VIlI. CONCLUSIONS



(b)

(d)

Figure 2.

example in section VI, with a maximum relative file size of 0.2 and
viewing conditionz,,=90% (color enhanced and scaled for display[8]

purposes): (a) original image, witQ F; = 80; (b) solution from the
NOQJT system with;)F*T = 30 andz7 = 50%; (c) optimal solution
using the OQJT system, witQ F'7- = 50 and 2, = 50%; (d) naive
solution with@QFr = 10 and z,, = 90%.

an optimal quality JPEG transcoding (OQJT) systefy,
and a near-optimal quality JPEG transcoding (NOQJT)
system. We compared the two systems with respect to
guality, computation complexity, and failure rate. ThE
NOQJT system yields very similar quality as OQJT with
a complexity up to 25 times smaller than that of the

12

Scaling,z,., %

Transcoded Lena (details) showing solutions from th§7] V. Ratnakar and V. Ivashin,

QFr 10 [ 20 | 30 | 40 | 50 [ 60 | 70 | 80 | 90 100
10 0.15] 0.27| 0.33| 0.39 0.44] 0.47] 0.50 0.52 0.53 0.56
20 0.19| 0.31] 0.41 0.47| 0.53 0.57 0.60| 0.63 0.65 0.67
30 0.21] 0.35 0.44] 0.52| 0.58 0.62 0.65 0.68 0.71 0.74
40 0.23] 0.37| 0.47| 0.55 0.61] 0.65 0.69 0.72 0.75 0.79
50 0.24 0.39 0.50 0.57| 0.63 0.68 0.72| 0.75 0.78 0.79
60 0.25 0.40, 0.51] 0.60, 0.65 0.70 0.74 0.78 0.81 0.88
70 0.26| 0.42] 0.54 0.62| 0.68 0.73 0.78/ 0.82 0.85 0.96
80 0.28| 0.45 0.57| 0.65 0.72| 0.77, 0.82 0.86 0.88 1.00
90 0.30| 0.49 0.61 0.70, 0.77| 0.83 0.88 0.91 0.93 0.99
100 0.31] 0.53 0.68 0.80 0.88 0.93 0.96 0.97, 0.98 0.99
Table XX

ACTUAL MSSIM FORLENA, WITH QF = 80, AS A FUNCTION OF

QFr AND z,,, UNDER VIEWING CONDITIONS z,, = 90%

OQJT system and performs an average between 1 and 2
transcoding operations per image. We have shown that
the failure rate can be made to be arbitrarily close to

zero. The proposed framework can be adapted to various
applications scenarios.
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