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Low-Complexity Transcoding of JPEG Images
with Near-Optimal Quality Using a Predictive

Quality Factor and Scaling Parameters
Stéphane Coulombe, Senior Member, IEEE, and Steven Pigeon

Abstract—A common transcoding operation consists of
reducing the file size of a JPEG image to meet bandwidth
or device constraints. This can be achieved by reducing its
quality factor (QF) or reducing its resolution, or both.
In this paper, using the Structural SIMilarity (SSIM)
index as the quality metric, we present a system capable
of estimating the QF and scaling parameters to achieve
optimal quality while meeting a device’s constraints. We
then propose a novel low-complexity JPEG transcoding
system which delivers near-optimal quality. The system is
capable of predicting the best combination of QF and scal-
ing parameters for a wide range of device constraints and
viewing conditions. Although its computational complexity
is an order of magnitude smaller than the system providing
optimal quality, the proposed system yields quality results
very similar to those of the optimal system.

Index Terms—JPEG, image transcoding, image adapta-
tion, resolution reduction, file size reduction, image quality,
SSIM.

I. I NTRODUCTION

The heterogeneous nature of mobile terminals
and multimedia applications renders transcoding
inevitable [1]. While Multimedia Messaging
Services (MMS) require server-side adaptation to
ensure interoperability between terminals [2], other
applications, such as mobile browsing, will require
adaptation of both page layout and media content
in order to maximize the user experience (the
best compromise between quality and data access
time) [3]. The image-related interoperability issues most
frequently encountered do not involve image formats,
as the majority of the traffic involves JPEG and GIF
images, but rather a resolution or file size exceeding
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the capabilities of the receiving terminal. For instance,
in MMS, the limited memory of some mobile devices
requires individual images to be under a certain file size
or resolution in order to be received and displayed. More
specifically, MMS v1.3 defines several content classes
in its conformance document with strict maximum file
sizes and resolutions [4]: Image Basic (30kB, 160x120),
Image Rich (100kB, 640x480), Video Rich (100kB,
640x480), Content Rich (600kB, 1600x1200), etc. In
the case of browsing, large file sizes may result in the
user waiting an unacceptable length of time to access
and display content. Therefore, file size reduction may
help reducing latency and increasing the user experience.

Changing an image’s resolution, orscaling, to meet
a terminal’s capabilities is a problem with well-known
solutions. However, optimizing image quality against
file size constraints remains a challenge, as there are
no well-established relationships between the quality
factor (QF), perceived quality, and the compressed file
size. Using arbitrary scaling as an additional means of
achieving precise file size reduction, rather than merely
resolution adaptation, makes the problem all the more
challenging.

Several studies have investigated the problem of file
size (or bit rate) reduction for visual content [5]–[11].
Their results show that reduction can be achieved
through adaptation of the quantization parameters
(either using adaptive prediction based on then
previous frames [12], [13] or two-pass estimation [14]
for better rate control) rather than through scaling. When
scaling is considered, only a2 : 1 reduction is used,
mostly because of the relatively simple compressed
domain solutions. For most studies, since they were
carried out in the context of low bit rate video, this
makes sense as resolution is often limited to a number
of predefined formats, several of which are linked by
a 2 : 1 scaling ratio. However, even in the context of
still-picture coding, scaling as an adaptation strategy is
not considered. For instance, Ridge [6], who provides
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excellent methods for scaling and then reducing the
file size of JPEG images, does not consider estimating
scaling and quality reduction in combination. We
believe this to be a major shortcoming, because the best
strategy for maximizing the user experience may well
be to scale down the picture and compress it with a
higher QF, rather than simply re-compressing it with a
lower QF.

In previous work, we first presented an accurate and
low-cost method to estimate the resulting compressed
file size of a JPEG image subject to scaling and
QF changes [15]. We noted that, for a given image,
potentially many different scaling and QF combination
lead to approximatively the same compressed file size,
raising the question as to which combination will
maximize the user experience, that is, offer the best
perceived transcoded quality, especially considering that
scaling could be used to hide some artifacts resulting
from a coarser QF. This question was further explored
in subsequent work [16], in which we proposed a
system where QF and scaling are optimized jointly in
order to maximize perceived quality, as measured by the
Structural SIMilarity index (SSIM) proposed by Wanget
al. [17]. Our results showed that, unlike PSNR, using
SSIM leads to more subtle trade-offs between quality
factor and scaling. In particular, we observed that the
system proposed in [16] balances the loss of detail due
to scaling and the blocking artifacts introduced by a
low quality factor. Indeed, it will select solutions with
smaller resolution as the maximum permissible relative
size becomes smaller rather than meeting the constraints
with very low quality factors leading to conspicuous
blocking artifacts.

In this paper, we further investigate methods of
combining QF and scaling parameters in JPEG
transcoding to meet the terminal’s resolution and file
size constraints, while at the same time maximizing
perceived quality as measured by the SSIM quality
metric. We propose two systems: first, the optimal
quality JPEG transcoding system (OQJT), capable of
providing exact solutions; and second, the near-optimal
quality JPEG transcoding system (NOQJT), which
yields near-optimal quality using prediction algorithms.

The paper is organized as follows. We first state the
transcoding problem in section II. In section III, we
show that many QF and scaling combinations yield
files of approximately the same size. The two proposed
systems are presented in section IV. They are compared
in section V in terms of their resulting quality, compu-

tational complexity and failure rate. A fully worked out
transcoding example is presented in section VI. Finally,
section VII concludes the paper.

II. T HE TRANSCODINGPROBLEM STATEMENT

We now formally define the JPEG image transcoding
problem, as well as the notation used in this paper.
Let I be a JPEG compressed image andQF(I), S(I),
W(I), and H(I) its quality factor, compressed file
size, width, and height respectively. Note that we will
assume that the definition of the QF complies with
the Independent JPEG Group definition [18]. For a
terminal or deviceD, let S(D), W(D), andH(D) be
its maximum permissible compressed data size, image
width, and image height respectively (W(D) andH(D)
are usually larger than the device’s screen resolution).

Let 0 < zT ≤ 1 be an aspect-preserving scaling, or
zoom factor. A JPEG transcoding operation, denoted
T (I, QFT , z

T
), is the function that returns the com-

pressed image resulting from the application of both the
new quality factorQFT and the scaling parameterz

T

to the JPEG imageI. A JPEG transcoding operation
T (I, QFT , z

T
) is defined asfeasible on deviceD if, for

parametersI, QFT , andz
T
, we meet all of the following

constraints:

S
(
T (I, QFT , z

T
)
)
≤ S(D)

zT W(I) ≤ W(D)

zT H(I) ≤ H(D)

(1)

We define the following set of feasible JPEG transco-
ding operations for the imageI on deviceD:

F(I,D) ={
(QFT , z

T
) | T (I, QFT , z

T
)) is feasible onD

}

We defines(I, QFT , z
T
), the relative size between the

transcoded image and the original imageI (which refers
to the JPEG image initially received at the transcoder
and not the original artifact-free image) as follows:

s(I, QFT , z
T
) =

S
(
T (I, QFT , z

T
)
)

S(I)

Let smax(I, D) be the maximum acceptable relative
size for imageI given deviceD. From eqs. (1) and the
fact that we never want to increase the original image’s
file size, it follows that:

s(I, QFT , z
T
) ≤ smax(I,D) =

min

(
S(D)

S(I)
, 1

)
≤ 1

(2)

Assuming that several values ofQFT and z
T

lead
to feasible transcodings, we are interested in finding
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(QF ∗
T (I, D), z∗

T
(I, D)), the transcoding parameters that

maximize the chosen quality criterion. They are defined
as:(

QF ∗
T (I, D), z∗

T
(I, D)

)
=

arg max
(QFT ,z

T
) ∈ F(I,D)

Q
(
I, T (I, QFT , z

T
)
)

(3)

where Q(I, J) is a quality metric using the original
imageI and the transcoded imageJ . Ideally, the quality
metric would be a measure of the perceived quality
of the transcoded image alone (no reference image
quality assessment); however, it is more convenient to
use a measure of the distortion between the original
and transcoded images (full reference image quality
assessment).

The optimal transcoded image quality for a given input
imageI constrained to deviceD is then defined as:

Q∗
D(I) = Q

(
I, T

(
I, QF ∗

T (I, D), z∗
T
(I, D)

))

The transcoded image corresponding to the optimal
parameters is denoted:

T ∗
D(I) = T

(
I, QF ∗

T (I, D), z∗
T
(I, D)

)

The transcoding parametersQF ∗
T (I, D) andz∗

T
(I, D)

are not necessarily unique, and, amongst the parameters
leading to equivalent resulting quality, the parameters
that minimize file size may be favored.

III. PREDICTING FEASIBLE TRANSCODINGS

In previous work, we presented methods to estimate
the compressed file size of a JPEG image subject to a
scalingz and a modification of its QF [15]. One form
for this predictor is the following:

Ŝ
(
T (I, QFT , z

T
)
)

= S(I) MgQF I ,gQF T ,z̃T

where Ŝ(T (I, QFT , z
T
)) is the predicted compressed

file size of the transcoded image obtained by applying
quality factor QFT and scaling parameterz

T
to the

image I. M is a 3-D array, the indices of which are
the quantized original quality factorQFI = QF(I),
the desired output quality factorQFT , and desired
scaling z

T
. In our notation, the tilde (∼) denotes

quantized values. Suitable quantization allows the array
to be searched efficiently while preventing context
dilution [15]. According to this scheme,MgQF I ,gQF T ,z̃T

represents therelative size prediction (the ratio of
output to input) for the various values of̃QF I , Q̃F T ,
and z̃T . It should be clear that for two different images
I and J with the same original quality factor, even

Scaling,z̃T , %
gQF T 10 20 30 40 50 60 70 80 90 100
10 0.03 0.04 0.05 0.07 0.08 0.10 0.12 0.15 0.17 0.20
20 0.03 0.05 0.07 0.09 0.12 0.15 0.19 0.22 0.26 0.32
30 0.04 0.05 0.08 0.11 0.15 0.19 0.24 0.29 0.34 0.41
40 0.04 0.06 0.09 0.13 0.17 0.22 0.28 0.34 0.40 0.50
50 0.04 0.06 0.10 0.14 0.19 0.25 0.32 0.39 0.46 0.54
60 0.04 0.07 0.11 0.16 0.22 0.28 0.36 0.44 0.53 0.71
70 0.04 0.08 0.13 0.18 0.25 0.33 0.42 0.52 0.63 0.85
80 0.05 0.09 0.15 0.22 0.31 0.41 0.52 0.65 0.78 0.95
90 0.06 0.12 0.21 0.31 0.44 0.59 0.75 0.93 1.12 1.12
100 0.10 0.24 0.47 0.75 1.05 1.46 1.89 2.34 2.86 2.22

Table I
THE SUB-ARRAY Mf80,gQF T ,z̃T

, OPTIMIZED FROM THE IMAGE

TRAINING SET DESCRIBED IN[15]. SHADING CORRESPONDS TO

THE EXAMPLE IN SECTIONVI.

if MgQF I ,gQF T ,z̃T
≈ MgQF J ,gQF T ,z̃T

, the final file size

S
(
T (I, QFT , z

T
)
)

can be radically different from
S

(
T (J, QFT , z

T
)
)

since S(I) and S(J) may be
independent.

An example of a sub-array ofM optimized over a
large image training corpus,M e80,gQF T ,z̃T

, is shown in
Table I, with corresponding expected relative absolute
error shown in Table II. Throughout this paper, we
present the case of̃QF I = 80, because it is the most
useful, as the majority of JPEG images on the Web
are compressed using a QF close to 80. Note that the
quantization scheme is not fixed by this algorithm, and
we selected the matrix to be10 × 10 for illustration
purposes. The transcodings were generated using the
ImageMagick command line tools, version 6.2.4 [19].
The scaling was performed using the Blackman filter,
chosen for its spectral properties [20]. The use of a
different filter may lead to different numerical values
which are different from those in Table I. This is
acceptable as long as the same transcoding tool and
filtering parameters are used for training and then
operating the system.

Taking the example in section VI, we are looking for
solutions with a relative file size of 0.7 or less. Note
that a portion of Table I is grayed, showingnonfeasible
solutions, either because they yield a relative file greater
than 0.7, or a resolution exceeding the terminal capabili-
ties (more than 90%, in the example). Examining Table I,
we note that various combinations ofQFT andz

T
lead

to similar size predictions. For instance,QFT = 90 and
z

T
= 50% give a relative size prediction of 0.44, which

is the same as that ofQFT = 60 and z
T

= 80%. The
best quality must lie at the boundary of the grayed area,
since choosing lower QFs in a column or lower scaling
in a row can only further reduce quality.
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Scaling,z̃T , %
gQF T 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
10 112.9 69.63 48.51 36.74 28.96 24.75 21.36 18.90 17.22 15.70
20 92.75 52.81 35.78 26.65 20.53 17.52 14.93 12.97 11.63 10.23
30 82.23 44.89 30.09 22.07 16.77 14.22 11.90 10.22 8.92 7.55
40 75.74 40.34 26.84 19.52 14.64 12.32 10.15 8.57 7.27 6.45
50 70.74 36.99 24.49 17.70 13.11 10.96 8.88 7.36 6.04 6.32
60 66.28 34.14 22.48 16.19 11.82 9.84 7.81 6.36 5.00 2.40
70 60.75 30.69 20.14 14.46 10.42 8.57 6.61 5.30 4.05 2.40
80 54.08 26.83 17.56 12.65 8.97 7.33 5.55 4.50 3.53 2.42
90 44.44 21.69 14.64 10.83 7.89 6.72 5.72 5.22 4.89 2.88
100 28.84 18.59 16.62 16.17 15.39 15.01 14.70 14.06 13.90 8.39

Table II
THE EXPECTED RELATIVE ABSOLUTE ERROR

E[
∣∣S(Iout) − Ŝ(Iout)

∣∣/S(Iout)] × 100% FOR MATRIX Mf80
.

THE SHADED REGION CORRESPONDS TO EXPECTED
RELATIVE ABSOLUTE ERRORS OF10% OR LESS.

Scaling,z̃T , %
gQF T 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
10 24.5 25.3 26.0 26.7 27.5 29.1 30.6 32.2 34.6 37.9
20 24.9 25.8 27.1 28.1 29.0 31.2 32.9 34.6 36.9 39.8
30 25.2 26.3 27.8 29.0 29.9 32.4 33.9 35.5 37.4 40.3
40 25.4 26.7 28.5 29.8 30.6 33.1 34.3 35.7 37.0 44.0
50 25.6 27.0 29.0 30.4 31.1 33.7 34.6 35.6 36.2 46.4
60 25.8 27.4 29.6 31.1 31.7 34.3 34.8 35.5 35.2 24.9
70 26.0 27.9 30.5 32.3 32.6 35.2 35.4 35.7 34.8 29.9
80 26.5 28.8 32.1 34.3 34.6 37.6 37.8 38.8 39.2 33.1
90 27.4 30.8 36.2 40.9 43.6 51.0 57.4 65.9 75.7 43.8
100 32.4 54.4 95.6 148 202 272 348 413 500 238

Table III
THE STANDARD ERROR(

E[(s(Iout) − ŝ(Iout))
2] − E2[s(Iout) − ŝ(Iout)]

) 1

2 × 1000
FOR MATRIX Mf80

.

IV. QUALITY -AWARE TRANSCODINGSYSTEMS

We saw in the previous section that many QF and
scaling combinations could lead to similar file sizes.
We now need to find the combination that maximizes
quality. This requires that we define a quality metric
Q(I, J) to solve eq. (3). Many objective quality
measures can be used. In [21], the authors state that
JND, SSIM, IFC, and VIF perform much better than the
rest of the algorithms (such as the widely used PSNR);
VIF being the best in this class. For convenience and
without loss of generality, we will use the Structural
SIMilarity (SSIM) index proposed by Wanget al. to
train the quality prediction [17]. More specifically, we
are computing the Mean Structural SIMilarity (MSSIM)
index to obtain the overall quality measure of an entire
image. Since the original imageI and the transcoded
image J may differ in resolution after adaptation,
we will need to scale them to a common resolution
before estimating the quality of the resulting image. We
propose to scale to a specific resolution based on the
viewing conditions—therefore largely determined by

(a)

(b)

Figure 1. Proposed quality-aware image transcoding systems: (a)
Optimal quality JPEG transcoding (OQJT) system (b) Proposed near-
optimal quality JPEG transcoding (NOQJT) system.

the deviceD—of the transcoded image.

We propose two quality-aware transcoding systems,
shown in Fig. 1. System (a) is designed to provide the
optimal solution in terms of quality for a given image
while system (b) uses prediction in order to provide a
near-optimal solution for a given image with a significant
reduction in transcoding computations. Note that the
two systems are different from the system presented
in previous work [16], as will be made clear in the
following pages.

A. Optimal Quality JPEG Transcoding (OQJT) System

In the system illustrated in Fig. 1(a), the set of
transcoding parameters leading to optimal quality
for a given image are determined. In this system,
a quality-aware parameter selection module iterates
through various parameters (QFT and z

T
, constrained

by image features and terminal characteristics) which
are provided to a transcoding engine. The transcoding
engine performs transcoding operations based on these
parameters. The original and transcoded images are
then scaled to a common resolution in order to measure
the quality of the transcoded image. These operations
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are performed in a quality assessment engine. The
quality metric is then provided to the quality-aware
parameters selection module for determination of
the optimal quality value given a certain parameter
resolution (10 × 10 in our case, i.e. 10 values ofQFT

by 10 values of z
T
). The quality-aware parameter

selection module ultimately returns, at the system
output, the optimal transcoding parametersQF ∗

T (I, D)
and z∗

T
(I, D), the optimal quality Q∗

D(I), and the
corresponding transcoded imageT ∗

D(I). Without any
further knowledge, a naïve algorithm would test all
possible combinations ofQT and z

T
. For instance, for

a resolution of10 × 10, 100 transcodings would have
to be performed. This number is excessive and can be
reduced significantly by exploiting several observations.
This will be discussed further in section V-C.

In Fig. 1a), we note that both the transcoded and
original images are scaled prior to quality evaluation.
We define the quality metric comparing, for a view-
ing condition parameterz

V
, the original imageI and

its transcoded versionJ (using transcoding parameter
z = z

T
) as:

Qz
V
(I, J) = MSSIM

(
R(I, z

V
), R

(
J,

z
V

z
T

))

where R(I, z) is an operator which decompressesI
and scales it using scaling factorz. According to this
definition and to Fig. 1a), for the image resolutions to
be equal, we must have:

z
V

= z
T

z
R

where z
V
≤ 1, since we never want to increase the

resolution of the original image when comparing quality,
and wherez

T
≤ 1 is necessary to meet the terminal

constraints. We consider four cases of interest:

Case 1: z
V

= 1. We compare the images at the
resolution of the original image with
z

R
= 1/z

T
.

Case 2: z
T

< z
V

< 1. We compare the images at a
resolution between that of the original and that
of the transcoded image, withz

R
= z

V
/z

T
> 1.

Case 3: z
V

< z
T
≤ 1. We compare the images at a

resolution smaller than that of the transcoded
image, withz

R
= z

V
/z

T
< 1.

Case 4: z
V

= z
T

< 1. We compare the images at the
resolution of the transcoded image, therefore
z

R
= 1.

The viewing conditions, controlled by parameter
z

V
, play a major role in the user’s appreciation of the

transcoded results. If the image might be transferred
later to another, more capable device (e.g. a PC), the
resolution of the original image must be considered for
comparison, leading toCase 1. Case 2 would be used
when the image is viewed at a resolution between the
transcoded resolution and the original resolution: for
example, the device’s screen resolution, by zooming
into the image, or the maximum resolution supported
by the device, possibly only accessible by using pan
and zoom.Case 3 would be used when the image
is viewed at a resolution smaller than the transcoded
resolution: for example, the device’s screen resolution,
by zooming out of an image transcoded to meet the
maximum resolution supported by the device.Case 4 is
not a case of interest, as it would find extremely small
images (e.g.1× 1 pixels) acceptable as long as they are
similar to the original image scaled at such an extreme
resolution.

Table IV shows the distribution of the average
MSSIM valuesMSSIM

z
V

,gQF I ,gQF T ,z̃T
, for Q̃F I = 80,

computed forCase 1 over the large image database
assembled in [15]. Table VI shows average MSSIM
values forCases 2 and3 (combined), where the viewing
conditions correspond to a maximum zoom of 90%
of the size of the original picture. Table VIII shows
average MSSIM values for a maximum zoom of40%.
The full details pertaining to the computation of these
tables are presented in previous work [16]. It is not
surprising to see that the MSSIM increases with an
increase ofQF and z, except whenz = 100% where
optimal quality is achieved forQF T = 80 (i.e. the same
QF as the input image), since no transcoding is required.

Tables V, VII, and IX show the variance for each case.
The variance is small enough in the tables to affirm that
the optimal quality solutions cannot be too far from those
obtained by using the tables of average MSSIM values.

B. Predicting the Optimal Transcoding Parameters

The system described in the previous subsection
requires many transcoding operations per image in
order to determine the optimal solution using an exact
quality criterion that is evaluated at each tentative
transcoding. We are seeking a far more computing-
efficient transcoding system providing near-optimal
quality performance.
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Scaling,z̃T , %
gQF T 10 20 30 40 50 60 70 80 90 100
10 0.12 0.20 0.27 0.33 0.38 0.42 0.46 0.49 0.52 0.55
20 0.14 0.24 0.33 0.40 0.47 0.52 0.56 0.59 0.63 0.66
30 0.15 0.27 0.36 0.44 0.51 0.56 0.61 0.65 0.68 0.73
40 0.16 0.28 0.38 0.47 0.54 0.59 0.64 0.68 0.71 0.77
50 0.17 0.29 0.40 0.49 0.56 0.62 0.67 0.71 0.74 0.79
60 0.17 0.31 0.42 0.51 0.58 0.64 0.69 0.74 0.77 0.86
70 0.18 0.32 0.43 0.53 0.60 0.66 0.71 0.76 0.79 0.92
80 0.19 0.34 0.46 0.56 0.64 0.71 0.76 0.80 0.83 1.00
90 0.21 0.37 0.50 0.61 0.70 0.76 0.81 0.85 0.87 0.98
100 0.23 0.42 0.57 0.69 0.78 0.83 0.88 0.91 0.93 0.99

Table IV
THE SUB-ARRAY MSSIM

z
V

,f80,gQF T ,z̃T
COMPUTED FORCase 1

(z
V

= 100%) USING THE IMAGE TRAINING SET FROM[15].
SHADING CORRESPONDS TO THE EXAMPLE IN SECTIONVI.

Scaling,z̃T , %
gQF T 10 20 30 40 50 60 70 80 90 100
10 59 70 81 91 100 107 113 119 124 131
20 62 73 84 92 98 103 106 109 111 113
30 64 77 87 94 98 101 102 103 103 103
40 64 78 89 96 100 101 102 101 101 100
50 67 81 91 96 98 97 96 93 91 94
60 68 83 92 97 97 95 92 88 84 52
70 69 85 96 100 99 97 93 89 85 57
80 73 90 99 100 95 89 82 74 69 10
90 78 96 104 101 92 83 73 65 60 13
100 87 105 109 101 88 75 63 53 45 9

Table V
THE STANDARD DEVIATION ×1000 OF SUB-ARRAY

MSSIM
z

V
,f80,gQF T ,z̃T

COMPUTED FORCase 1 (z
V

= 100%)
USING THE IMAGE TRAINING SET FROM[15]. SHADING

CORRESPONDS TO THE EXAMPLE IN SECTIONVI.

Scaling,z̃T , %
gQF T 10 20 30 40 50 60 70 80 90 100
10 0.13 0.22 0.30 0.36 0.42 0.46 0.50 0.53 0.55 0.59
20 0.15 0.27 0.36 0.44 0.51 0.56 0.60 0.64 0.66 0.70
30 0.17 0.29 0.40 0.49 0.56 0.61 0.66 0.69 0.72 0.76
40 0.17 0.31 0.42 0.51 0.58 0.64 0.68 0.72 0.75 0.80
50 0.18 0.32 0.44 0.53 0.61 0.67 0.71 0.75 0.78 0.82
60 0.19 0.34 0.46 0.56 0.63 0.69 0.74 0.78 0.81 0.88
70 0.20 0.35 0.48 0.57 0.65 0.71 0.76 0.80 0.83 0.93
80 0.21 0.38 0.51 0.61 0.69 0.75 0.80 0.84 0.87 1.00
90 0.23 0.41 0.55 0.66 0.75 0.81 0.85 0.88 0.91 0.98
100 0.25 0.46 0.62 0.74 0.83 0.88 0.92 0.94 0.96 0.99

Table VI
THE SUB-ARRAY MSSIM

z
V

,f80,gQF T ,z̃T
COMPUTED FORCases 2

AND 3 (WITH z
V

= 90%) USING THE TRAINING SET FROM[15].
SHADING CORRESPONDS TO THE EXAMPLE IN SECTIONVI.

Since we have shown that we can obtain a good
prediction of the relative file size of an image subject
to a change of quality factor and scaling parameters
(see Table I with the relative absolute error presented
in Table II and the standard error in Table III) as well as
the corresponding predicted MSSIM values (as shown in
Tables IV-IX) it seems reasonable to think that the same

Scaling,z̃T , %
gQF T 10 20 30 40 50 60 70 80 90 100
10 59 71 84 95 106 113 120 126 130 137
20 62 74 85 94 102 106 110 113 115 117
30 64 77 88 95 100 102 104 105 105 105
40 64 79 90 96 100 102 104 103 102 101
50 67 81 91 96 97 97 96 93 90 94
60 69 83 92 95 95 93 91 87 83 54
70 69 85 96 98 97 95 92 87 83 58
80 74 89 97 96 90 84 77 71 64 9
90 79 95 100 95 84 74 66 60 53 13
100 87 102 101 89 73 60 48 41 37 9

Table VII
THE STANDARD DEVIATION ×1000 OF SUB-ARRAY

MSSIM
z

V
,f80,gQF T ,z̃T

COMPUTED FORCases 2 AND 3 (WITH

z
V

= 90%) USING THE TRAINING SET FROM[15]. SHADING

CORRESPONDS TO THE EXAMPLE IN SECTIONVI.

Scaling,z̃T , %
gQF T 10 20 30 40 50 60 70 80 90 100
10 0.25 0.43 0.55 0.62 0.69 0.73 0.76 0.79 0.80 0.82
20 0.30 0.52 0.65 0.73 0.79 0.82 0.85 0.87 0.88 0.89
30 0.33 0.56 0.69 0.77 0.83 0.86 0.89 0.90 0.91 0.92
40 0.35 0.58 0.72 0.80 0.85 0.88 0.90 0.92 0.92 0.94
50 0.36 0.61 0.74 0.82 0.87 0.90 0.92 0.93 0.94 0.95
60 0.38 0.63 0.76 0.84 0.89 0.92 0.93 0.94 0.95 0.96
70 0.39 0.65 0.78 0.86 0.90 0.93 0.94 0.95 0.95 0.97
80 0.42 0.68 0.81 0.89 0.93 0.95 0.96 0.96 0.97 1.00
90 0.45 0.72 0.85 0.92 0.95 0.96 0.97 0.97 0.98 0.99
100 0.49 0.78 0.91 0.97 0.98 0.98 0.99 0.99 0.99 1.00

Table VIII
THE SUB-ARRAY MSSIM

z
V

,f80,gQF T ,z̃T
COMPUTED FORCases 2

AND 3 (WITH z
V

= 40%) USING THE TRAINING SET FROM[15].
SHADING CORRESPONDS TO THE EXAMPLE IN SECTIONVI.

Scaling,z̃T , %
gQF T 10 20 30 40 50 60 70 80 90 100
10 74 93 110 120 125 126 126 125 123 121
20 77 89 98 103 103 101 98 95 91 88
30 79 88 92 93 91 87 83 79 76 72
40 81 89 92 91 88 85 81 76 74 68
50 82 87 86 82 76 72 68 62 60 56
60 84 86 82 77 70 65 59 54 51 36
70 86 88 85 78 71 67 62 58 56 43
80 89 84 75 64 53 48 41 37 33 3
90 94 81 67 53 40 35 31 28 25 6
100 99 72 45 29 19 20 17 17 15 4

Table IX
THE STANDARD DEVIATION ×1000 OF SUB-ARRAY

MSSIM
z

V
,f80,gQF T ,z̃T

COMPUTED FORCases 2 AND 3 (WITH

z
V

= 40%) USING THE TRAINING SET FROM[15]. SHADING

CORRESPONDS TO THE EXAMPLE IN SECTIONVI.

machine learning techniques can be used to predict the
optimal set of parameters for given maximum relative file
size smax(I, D) and viewing conditionz

V
(I, D) where

z
V
(I, D) is the viewing conditionz

V
given imageI

and deviceD. We havez
V
(I, D) ≤ zmax(I, D), where
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zmax(I, D), the maximum scaling factor, is defined as:

zmax(I, D) = min

(
W(D)

W(I)
,
H(D)

H(I)
, 1

)
(4)

We propose to set the viewing conditions to the
maximum resolution supported by the terminal or the
original size of the image, whichever is the smallest.
Therefore, we proposez

V
(I, D) = zmax(I, D).

Using the image training setT described in [15], we
can compute, for every combination ofsmax(I, D) and
z

V
(I, D), the average optimal quality factor and scaling

values obtained by using the optimal quality system in
Fig. 1a). Such values are computed as:

(
QF

∗

T ,z∗T
)

=

|TQFI
|−1

∑

J ∈ TQFI

arg max
(QF,z)

Qz
V

(
J, T (J, QF, z)

)

(5)

subject to the simultaneous constraints

z ≤ zV (I, D)

s
(
T (J, QF, z)

)
≤ smax(I, D)

whereTQFI
= {J ∈ T | QFJ = QFI}, the subset of all

images in the training set with the same original QF asI.

It is important to note that the values used for comput-
ing eq. (5) are optimal values obtained from the OQJT
system (Fig. 1a)) for each image in the training set.
Therefore, for each image in the training set and set of
constraints (relative file size and viewing condition), the
QFT and z

T
parameters leading to the highest quality

value are determined. Tables X and XI show the values
of QF

∗

T and z̄∗T as a function ofsmax and z
V

, for
our training set. They correspond to the centroids of
the optimal solutions in the space of theQF and z
parameters. Table XII shows the predicted MSSIM score
expressed as a function ofsmax and z

V
. Tables X, XI,

and XII can be computed for any given density forsmax,
but only a few are shown here; the variable increments
of smax in the tables will be used with the examples
presented in Section VI.

C. Proposed near-optimal quality JPEG transcoding
(NOQJT) system

We propose to use the system illustrated in Fig. 1b).
The system exploits the results described in the previous
subsection to estimate the optimal set of transcoding
parameters in an optimalQF and z prediction module.
The system works as follows:

Viewing condition,z
V

, %
smax 10 20 30 40 50 60 70 80 90 100
0.05 73.7 42.2 27.1 24.5 23.7 23.4 23.4 23.4 23.4 23.4
0.10 94.2 74.7 48.1 32.7 27.4 25.6 25.1 24.8 24.7 24.7
0.15 98.6 87.9 71.8 50.9 37.9 33.8 31.6 30.4 30.0 29.9
0.20 99.2 91.4 83.3 68.4 51.0 42.4 38.4 36.7 35.3 34.8
0.30 99.2 98.2 90.0 83.5 73.1 61.8 52.0 47.1 44.2 42.5
0.40 99.2 99.7 92.2 89.7 82.2 74.4 65.3 57.1 52.3 48.7
0.50 99.2 99.8 96.6 90.6 89.3 83.7 76.3 68.0 60.9 51.8
0.60 99.2 99.8 99.2 92.7 90.0 88.5 83.0 76.5 69.6 59.7
0.70 99.2 99.8 99.9 95.5 90.6 90.0 87.4 81.2 76.7 67.1
0.80 99.2 99.8 99.9 98.3 92.5 90.2 89.9 86.4 81.4 65.5
0.90 99.2 99.8 99.9 99.6 95.4 90.8 90.1 89.0 83.0 70.8
1.00 99.2 99.8 99.9 99.9 97.8 92.5 90.3 89.9 88.1 79.8

Table X
AVERAGE OPTIMAL QUALITY FACTOR QF

∗

T FORQF(I) = 80, AS

A FUNCTION OF smax AND z
V

USING THE IMAGE TRAINING SET

FROM [15].

Viewing condition,z
V

, %
smax 10 20 30 40 50 60 70 80 90 100
0.05 10.0 18.2 22.7 24.4 25.2 25.4 25.4 25.4 25.4 25.4
0.10 10.0 19.9 29.0 35.4 39.5 41.5 42.2 42.5 42.6 42.7
0.15 10.0 20.0 29.9 39.0 45.7 48.8 51.6 53.4 54.0 54.2
0.20 10.0 20.0 29.9 39.5 48.5 53.4 56.7 59.0 61.2 62.2
0.30 10.0 20.0 29.9 39.9 49.6 57.6 63.9 67.9 71.1 73.2
0.40 10.0 20.0 29.8 39.9 49.5 58.6 67.1 73.4 77.5 80.8
0.50 10.0 20.0 29.8 39.5 49.8 56.7 65.7 74.3 80.9 88.5
0.60 10.0 20.0 29.8 38.6 49.9 57.4 66.7 73.9 81.8 90.6
0.70 10.0 20.0 29.9 38.1 49.5 59.8 64.3 77.6 82.6 90.2
0.80 10.0 20.0 30.0 38.2 48.1 59.7 68.5 73.6 85.1 97.2
0.90 10.0 20.0 30.0 38.9 46.6 59.0 69.7 73.7 85.6 99.9
1.00 10.0 20.0 30.0 39.6 46.1 57.0 69.3 78.8 81.8 100

Table XI
AVERAGE OPTIMAL SCALING z̄∗

T (IN %), FORQF(I) = 80, AS A

FUNCTION OFsmax AND z
V

USING THE IMAGE TRAINING SET

FROM [15].

Viewing condition,z
V

, %
smax 10 20 30 40 50 60 70 80 90 100
0.05 0.15 0.20 0.22 0.22 0.22 0.22 0.22 0.22 0.22 0.22
0.10 0.24 0.36 0.42 0.44 0.45 0.45 0.45 0.45 0.45 0.45
0.15 0.23 0.36 0.44 0.48 0.50 0.51 0.51 0.51 0.51 0.51
0.20 0.25 0.41 0.52 0.58 0.61 0.61 0.62 0.62 0.62 0.62
0.30 0.25 0.45 0.55 0.63 0.67 0.69 0.70 0.70 0.71 0.71
0.40 0.25 0.46 0.56 0.66 0.70 0.73 0.75 0.76 0.76 0.76
0.50 0.25 0.46 0.59 0.66 0.74 0.76 0.78 0.79 0.80 0.81
0.60 0.25 0.46 0.61 0.67 0.75 0.79 0.81 0.81 0.82 0.84
0.70 0.25 0.46 0.62 0.69 0.75 0.81 0.82 0.84 0.84 0.86
0.80 0.25 0.46 0.62 0.71 0.75 0.81 0.85 0.85 0.86 0.89
0.90 0.25 0.46 0.62 0.73 0.76 0.81 0.85 0.86 0.87 0.94
1.00 0.25 0.46 0.62 0.74 0.78 0.81 0.85 0.88 0.89 0.99

Table XII
AVERAGE MSSIM OF OPTIMAL SOLUTIONS OBTAINED FROM

SYSTEM OQJT (USED ASQ̂∗

D ) USING THE IMAGE TRAINING SET

FROM [15].

Step 1: For given imageI and deviceD, compute
smax = smax(I, D) using eq. (2) and
z

V
= z

V
(I, D) = zmax(I, D) using eq. (4).

Step 2: Obtain QF
∗

T (smax,z
V
) and z̄∗T (smax,z

V
) from
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Tables X and XI respectively—let us assume
that QF(I) = 80 to match the tables. Set
QF T = QF

∗

T (smax,z
V
) and z

T
= z̄∗T (smax,

z
V
). Note that we take the nearest smaller

values in the tables if the desiredsmax and z
V

are not present.

Step 3: Transcode the image with the quality factor and
scaling parametersQF T andz

T
respectively.

Step 4: If the file size of the transcoded image is too
large (i.e. if s(I, QFT , z

T
) > smax), identify

the quality factor and scaling parameters (QFT

andz
T
) corresponding to the next smaller value

of smax in the Tables X and XI and go to step
3 (actually try a smaller value ofsmax from the
tables than previously tried until a different set
of QFT and z

T
is obtained). Otherwise go to

step 5.

Step 5: Return near-optimal parameterŝQF
∗

T (I, D) =
QFT and ẑ∗T (I, D) = z

T
, the transcoded image

using these parameterŝT ∗
D(I) = T (I, QFT , z

T
),

and predicted transcoded image quality
Q̂∗

D(I) = Qz
V
(I, T̂ ∗

D(I)) (using Table XII).

The NOQJT system differs from the OQJT systems
in one major way: the optimal transcoding parameters
are predicted rather than searched iteratively. However,
in both systems, the transcoded image is always
validated in order to ensure that it meets the transcoding
constraints.

The two systems presented in this paper differ from
those previously presented. For example, the first system
we presented was capable of predicting the transcoded
file size only, relying on quantization to speed up compu-
tations, as well as to minimize memory usage [15]. The
first of the systems presented in this paper, the OQJT
system, is capable of yielding the optimal decision for a
given picture, but at a greater cost as it explores the pa-
rameter space without prediction. The system presented
in [16] predicts the optimal transcoding parametersQF ∗

T

and z∗
T

that maximize quality (as predicted by MSSIM
or PSNR). This system uses a version of eq. (5) where
the constraints are also predicted using the method
presented in [15]. The parameters search is iterative in
the set of predicted feasible solutions. We also showed
that while the system behaves differently depending on
whether PSNR or MSSIM is used as a quality metric,
it takes reasonable decisions in both cases. The system
in [16] (as in [15]) makes extensive use of parameter

quantization to reduce memory requirements. Finally, the
second system we propose in this paper, the NOQJT
system, uses prediction to directly estimate the optimal
parametersQF

∗

T andz̄∗T while maximizing the perceived
quality at the same time as satisfying the constraints
of maximal file size (smax) and viewing conditions
(z

V
). In the next section, section V, we show that the

performance of the proposed NOQJT system is very
good; we get near-optimal MSSIM values (i.e. close
to that of the OQJT system) with significantly reduced
complexity.

V. SIMULATION RESULTS

In this section, we compare the OQJT system with the
NOQJT system with respect to quality (using SSIM),
computation complexity, and failure rate. Again, we
concentrate on the case whereQF(I) = 80. The tables
will be shown forsmax from 0.1 to 1.0 by steps of 0.1.
However, in our simulations, we used tables withsmax

from 0.05 to 0.1 by steps of 0.025, and from 0.1 to 1.0
by steps of 0.05. Even forQF

∗

T andz∗T tables (like those
of Tables X and XI), we used the same resolution.

A. Quality using SSIM

For each set of constraintssmax and z
V

, we
transcoded each image of the test set described in [15]
to meet those constraints. The average MSSIM values
(MSSIM

OQJT
smax,zV

) obtained using the OQJT system are
provided in Table XIII. For the same set of constraints
and for the same test images, we transcoded the
images with the proposed NOQJT system. The average
MSSIM values obtained are provided in Table XIV.
Note that, for convenience, the values ofQF and z
used for transcoding were rounded to the nearest value
corresponding to the resolution of our transcoded image
database (we used a parameters resolution of10×10, as
in Table I). The average error (in %) and the variance of
the average error between the two systems are presented
in Table XV and Table XVI. The average error is
relatively small throughout the table, but increases as
the value ofsmax decreases (i.e. as we move further
away from the image’s initial file size). Since, for any
given test image, the NOQJT solution’s MSSIM can
at best equal that of the OQJT solution, the average
absolute MSSIM error over each image of the test set
equals the error between the average MSSIM of both
systems. Indeed, we have:
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Viewing condition,z
V

, %
smax 10 20 30 40 50 60 70 80 90 100
0.1 0.24 0.37 0.42 0.44 0.45 0.45 0.46 0.46 0.46 0.46
0.2 0.25 0.42 0.53 0.58 0.61 0.62 0.62 0.63 0.63 0.63
0.3 0.25 0.45 0.56 0.63 0.68 0.70 0.71 0.71 0.71 0.71
0.4 0.25 0.46 0.57 0.66 0.71 0.74 0.75 0.76 0.76 0.77
0.5 0.25 0.46 0.59 0.67 0.75 0.76 0.78 0.79 0.80 0.81
0.6 0.25 0.46 0.62 0.67 0.75 0.79 0.81 0.82 0.83 0.84
0.7 0.25 0.46 0.62 0.69 0.75 0.81 0.82 0.84 0.85 0.86
0.8 0.25 0.46 0.62 0.71 0.76 0.81 0.85 0.86 0.87 0.89
0.9 0.25 0.46 0.62 0.73 0.77 0.81 0.85 0.87 0.87 0.94
1.0 0.25 0.46 0.62 0.74 0.78 0.81 0.85 0.88 0.89 1.00

Table XIII
AVERAGE MSSIM (MSSIM

OQJT

smax,zV
) OF OPTIMAL SOLUTIONS

OBTAINED WITH THE OQJTSYSTEM USING THE IMAGE TEST SET

FROM [15]).

1

|T|

∑

I∈T

∣∣∣QOQJT
smax,z

V
(I) −QNOQJT(I)

smax,z
V

∣∣∣

=
1

|T|

∑

I∈T

QOQJT
smax,z

V
(I) −

1

|T|

∑

I∈T

QNOQJT
smax,z

V
(I)

= MSSIM
OQJT
smax,zV

− MSSIM
NOQJT
smax,zV

(6)

where T represents the image test set,Qsmax,z
V
(I) =

Qz
V
(I, T (I, QF ∗

smax,z
V
(I), z∗smax,z

V
(I))) the quality of

the optimal solution givenI, smax and z
V

(for a given
method).

Not only the expected resulting quality from the
two systems are closely matched (and accordingly
the expected difference small), the respective rankings
of solutions from both systems are highly correlated.
Analysing the correlation between solution orderings
from best to worst given the constraints in both systems
shows a very high rank correllation. The average
Spearmanρ rank correlation coefficient is found to be
ρ ≈ 0.999661, a result of high significance [22]. A
Studentt-distribution test estimates the probability that
both rankings are the same as being essentially 1.

We also note that the system is capable of accounting
for blocking artifacts, favoring smaller pictures with
higher QFs having better MSSIM, over larger pictures,
more crudely compressed pictures, as revealed in Ta-
ble XI. For example, taking Table XI, withz

V
= 80%,

we see that the optimal scalingz
T

goes from78.8% to
42.5% as the maximum allowable relative file size goes
from 1.0 to 0.1.

B. The Effects of Quantization

In our simulation, for each image from the training
set, the resulting MSSIM and file size were obtained

Viewing condition,z
V

, %
smax 10 20 30 40 50 60 70 80 90 100
0.1 0.23 0.33 0.35 0.36 0.38 0.37 0.37 0.37 0.37 0.37
0.2 0.25 0.41 0.52 0.56 0.56 0.60 0.56 0.57 0.57 0.57
0.3 0.25 0.44 0.55 0.63 0.67 0.68 0.69 0.68 0.68 0.67
0.4 0.25 0.46 0.56 0.66 0.70 0.73 0.73 0.75 0.74 0.75
0.5 0.25 0.46 0.58 0.66 0.74 0.76 0.77 0.79 0.79 0.80
0.6 0.25 0.46 0.61 0.67 0.75 0.78 0.80 0.81 0.82 0.84
0.7 0.25 0.46 0.62 0.68 0.75 0.80 0.82 0.84 0.84 0.86
0.8 0.25 0.46 0.62 0.70 0.75 0.81 0.84 0.85 0.86 0.89
0.9 0.25 0.46 0.62 0.72 0.76 0.81 0.85 0.86 0.87 0.94
1.0 0.25 0.46 0.62 0.73 0.77 0.81 0.85 0.88 0.88 0.99

Table XIV
AVERAGE MSSIM (MSSIM

NOQJT

smax,zV
) OF SOLUTIONS OBTAINED

WITH THE NOQJTSYSTEM USING THE IMAGE TEST SET

FROM [15].

Viewing condition,z
V

, %
smax 10 20 30 40 50 60 70 80 90 100
0.1 1.33 3.00 3.45 4.70 5.51 5.85 5.93 5.94 5.95 5.95
0.2 0.03 0.71 2.11 1.83 2.34 3.94 4.41 4.63 4.80 4.84
0.3 0.02 0.01 0.15 1.94 1.88 1.40 3.97 4.26 4.46 2.70
0.4 0.02 0.00 1.11 0.06 1.10 1.99 0.86 2.09 3.61 2.80
0.5 0.02 0.00 0.03 0.23 0.04 0.76 0.72 2.94 2.14 2.90
0.6 0.02 0.00 0.03 0.93 0.06 0.35 0.61 1.42 2.24 3.15
0.7 0.02 0.00 0.02 0.46 0.22 0.07 1.33 0.35 0.80 3.16
0.8 0.02 0.00 0.01 0.46 0.65 0.07 0.05 0.51 2.61 5.66
0.9 0.02 0.00 0.01 0.33 0.78 0.21 0.05 1.24 3.28 1.13
1.0 0.02 0.00 0.00 0.19 1.06 0.54 0.09 0.05 0.71 0.00

Table XV
AVERAGE ERROR×100 BETWEEN THE AVERAGEMSSIMS OF THE

OQJTAND NOQJTSYSTEMS(SAME AS THE AVERAGE

ABSOLUTE MSSIM ERROR OVER EACH IMAGE) USING THE IMAGE

TEST SET FROM[15].

Viewing condition,z
V

, %
smax 10 20 30 40 50 60 70 80 90 100
0.1 1.62 3.53 4.05 4.86 4.92 5.09 5.19 5.20 5.23 5.23
0.2 0.49 1.67 2.60 2.91 3.38 4.13 3.31 3.44 3.61 3.67
0.3 0.43 0.33 0.81 2.70 3.05 2.48 3.38 3.65 3.85 4.26
0.4 0.42 0.10 2.29 0.55 2.35 3.33 2.19 2.44 2.55 3.48
0.5 0.42 0.10 0.27 1.00 0.56 1.75 2.69 3.58 2.61 3.46
0.6 0.42 0.10 0.32 1.99 0.64 0.93 1.40 1.99 3.55 3.43
0.7 0.42 0.10 0.28 1.35 1.02 0.66 2.48 1.22 1.73 5.24
0.8 0.42 0.10 0.24 1.40 1.60 0.63 0.51 1.33 1.91 5.41
0.9 0.42 0.10 0.24 1.27 1.67 1.05 0.58 2.04 1.91 3.99
1.0 0.42 0.10 0.08 1.03 2.09 1.44 0.68 0.58 1.59 0.05

Table XVI
AVERAGE STANDARD DEVIATION OF ERROR×100 BETWEEN THE

AVERAGE MSSIMS OF THEOQJTAND NOQJTSYSTEMS(SAME

AS THE AVERAGE ABSOLUTEMSSIM ERROR OVER EACH IMAGE)
USING THE IMAGE TEST SET FROM[15].

for a quantized parameter grid, where parameters are
quantized against a10 × 10 grid. For a given original
QF , solving eq. (3) using the quantized tables means

that QF
∗

T and z̄∗T are approximated bỹQF ∗
T and ˜̄z∗T ,

obtained using quantized quality and scaling factors—for
example, 76.2 would become 80. Since prediction is only

available through the quantized parameters,̃QF ∗
T and ˜̄z∗T
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are necessarily rounded to the nearest available solution.
Our simulations show that if truncation is used, the
size and quality predictions are necessarily pessimistic
and fewer retries are made as file size prediction is
systematically undershot. If rounding is used, simula-
tions show that more accurate, yet possibly optimistic,
quality prediction is achieved, although this may result
in more retries as the prediction may overshoot file size.
However, it is preferable to use rounding rather than
truncation, as rounding enhances user experience, even
at the cost of a few retries.

C. Computational Complexity

Finding the set of parameters leading to optimal
quality in the OQJT system can be compared to the
search for optimal motion vectors performed in video
coding [23]. We have a grid size ofN × N points on
which a quality metric needs to be optimized assuming
that the function is convex or near-convex. If we set
the MSSIM of an image to−1 (which is the worst
possible score) when the device constraints are not met,
we have such a situation; that is, lowQF andz values
lead to small MSSIM values, while largeQF and z
values may not meet the device constraints. Therefore
the optimal solutions lie somewhere in between. An
exhaustive search method evaluatesN × N values
(i.e. N2 transcoding operations in our case). The most
efficient methods (excluding predictive methods such
as PMVFAST and EPZS that use information from
surrounding motion blocks, which does not apply to
our case) have a complexity of the order oflog(N).
For instance, the Three Step Search algorithm evaluates
1 + 3 × 8 = 25 points [24], [25]. If the number of points
to be examined can be reduced by excluding solutions
that exceed the device’s resolution, the number of steps
in the search algorithm will nonetheless increase with
parameter resolution, while a finer grid will require a
deeper search.

By contrast, the proposed NOQJT system requires,
on average, fewer than two transcoding operations per
image, as shown in Table XVII. Interestingly, the com-
plexity of the NOQJT system is likely to grow very
slowly as the parameters resolution increases (as, on
average, very few transcodings will be performed), while
the complexity of the OQJT system will increase as the
parameter resolutions increases. This means an important
speedup for the NOQJT system, which will be at least
10 times as fast as the OQJT system. The maximum
number of transcoding operations (i.e. in the worst case
scenario) depends on the grid size. Grid size and other

Viewing condition,z
V

, %
smax 10 20 30 40 50 60 70 80 90 100
0.1 1.16 1.57 1.78 1.90 1.77 1.85 1.85 1.85 1.85 1.85
0.2 1.02 1.03 1.10 1.36 1.57 1.20 1.79 1.79 1.79 1.79
0.3 1.00 1.25 1.03 1.04 1.09 1.43 1.16 1.74 1.74 1.99
0.4 1.00 1.03 1.00 1.04 1.03 1.08 1.85 1.14 1.88 1.46
0.5 1.00 1.01 1.36 1.01 1.13 1.04 1.79 1.03 1.15 1.17
0.6 1.00 1.00 1.24 1.00 1.02 1.77 1.10 1.04 1.06 1.08
0.7 1.00 1.00 1.08 1.62 1.01 1.08 1.05 1.08 1.15 1.07
0.8 1.00 1.00 1.02 1.94 1.00 1.02 1.30 1.16 1.03 1.01
0.9 1.00 1.00 1.02 1.62 1.79 1.01 1.05 1.04 1.01 1.02
1.0 1.00 1.00 1.00 1.36 1.80 1.00 1.02 1.19 1.19 1.01

Table XVII
AVERAGE NUMBER OF TRANSCODING OPERATIONS PER IMAGE

WITH THE PROPOSEDNOQJTSYSTEM USING THE IMAGE TEST

SET FROM[15].

Viewing condition,z
V

, %
smax 10 20 30 40 50 60 70 80 90 100
0.1 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02
0.2–1.0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Table XVIII
TRANSCODING FAILURE RATE(IN %) WITH THE PROPOSED

NOQJTSYSTEM USING THE IMAGE TEST SET FROM[15].

parameters from the NOQJT framework can be adapted
for different application scenarios, providing various
compromises between optimality of the visual quality
and computational complexity (e.g. we could increase
the average visual quality with an increase of average
complexity by performing aceil on theQF

∗

T in Table X
instead of rounding).

D. Failure Rate

An important aspect of a transcoding system to study
is the failure rate, i.e. how often the system cannot find a
solution to the constraints. We observe from Table XVIII
that the system only fails for cases wheresmax = 0.1,
which is the smallest value shown in the table. We
have this problem because the parameter set used in
our simulations is limited to scaling factors of10% or
more. In practice, this could be easily solved by reducing
the scaling values until the constraints are met, leading
to no failure at all. However, it can be argued that, in
such a situation, the right thing to do is to fail since the
returned image may be of no use as its resolution could
be too small. For instance, it may not make much sense
to reduce a 640x480 image to below 64x48 to fit a very
small file size constraint.

VI. A T RANSCODINGEXAMPLE

Consider a device withS(D) = 30500, W(D) = 640,
H(D) = 480, and an image, Lena, withS(I) = 43266,
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W(I) = 512, H(I) = 512 andQF(I) = 80.

Step 1: We computesmax = min
(

30500/43266, 1
)
≈ 0.7

and z
V

= zmax(I, D) = min
(

640
512 , 480

512 , 1
)

≈
90%.

Step 2: Using Table X, we find that QF T =
QF

∗

T (0.7, 0.9) = 76.7, which we quantize
to 80. Using Table XI, we find that
z

T
= z̄∗T (0.7, 0.9) = 82.6%, which we

quantize to80%.

Step 3: Transcode the image with the quality factor and
scaling parametersQF T and z

T
respectively.

After transcoding, we obtain an image with
s(I, 80, 80%) = 0.68 (see Table XIX).

Step 4: Since the transcoded image meets the target file
size (0.68< 0.70), we go to step 5.

Step 5: Return near-optimal parameterŝQF
∗

T (I, D) =
80 and ẑ∗T (I, D) = 80%, the transcoded image
using the parameterŝT ∗

D(I) = T (I, 80, 80%),
and predicted transcoded image quality
Q̂∗

D(I) = Qz
V
(I, T̂ ∗

D(I)) = 0.84 from
Table XII (with z

V
= 0.9) while the true image

quality from Table XX is0.86 (a ∼ 2% error).

Looking at Tables XIX and XX, the actual results
from transcodings on the Lena image, the OQJT
system would select, after several transcoding iterations,
QF ∗

T (I, D) = 80 and z∗
T
(I, D) = 80% leading to a

relative file size of0.68 and a quality ofQ∗
D(I) = 0.86.

Therefore, for Lena under these constraints, we obtained
an image with optimal quality with NOQJT with a
single transcoding operation.

Let us consider a second, more extreme,
example, the results of which are shown in
Fig. 2. Let us keep the viewing conditions
z

V
= 90%, but set the maximum relative filesize

to smax = 0.2. Reapplying the procedure, we find
that QF

∗

T = 35.3 ≈ 40 and z̄∗T = 61.2% ≈ 60%.
We get s(I, 40, 60%) = 0.22 > 0.2, which is not an
acceptable solution, and the algorithm retries different
parameters. Reducingsmax to 0.15, the tables yield
QFT = 30.0, z

T
= 54.0% ≈ 50%. The new relative

size iss(I, 30, 50) = 0.13, which is now an acceptable
solution. Therefore,Q̂F

∗

T = 30, ẑ∗T = 50% and
Q̂∗

D = 0.51. After transcoding we find thatQD = 0.58.
The OQJT system findsQF ∗

T = 50 and z
T

= 50%
yielding an image quality of0.63, which is close to

Scaling,z
T

, %
QFT 10 20 30 40 50 60 70 80 90 100
10 0.01 0.02 0.03 0.05 0.07 0.09 0.11 0.13 0.15 0.18
20 0.01 0.03 0.05 0.07 0.10 0.14 0.17 0.21 0.25 0.29
30 0.02 0.04 0.07 0.10 0.13 0.18 0.23 0.28 0.33 0.39
40 0.02 0.04 0.08 0.12 0.16 0.22 0.27 0.33 0.40 0.48
50 0.02 0.05 0.09 0.13 0.18 0.25 0.31 0.39 0.46 0.51
60 0.02 0.05 0.10 0.15 0.21 0.28 0.36 0.44 0.54 0.73
70 0.03 0.06 0.11 0.18 0.25 0.34 0.43 0.53 0.65 0.89
80 0.03 0.08 0.14 0.22 0.31 0.42 0.54 0.68 0.82 1.00
90 0.04 0.11 0.20 0.31 0.44 0.62 0.79 0.99 1.20 1.18
100 0.08 0.24 0.47 0.79 1.15 1.63 2.10 2.63 3.23 2.48

Table XIX
ACTUAL RELATIVE FILE SIZES FORLENA, QFI = 80, AS A

FUNCTION OFQFT AND z
T

.

the 0.58 resulting from the NOQJT system. However,
we can observe that, as shown in figures II and VII,
the system becomes less precise as the target relative
file sizes become smaller. Still, we managed to obtain a
good solution in 2 transcodings only.

Using the same size contraints, let us compare with a
simple algorithm that first scales to the viewing con-
ditions then lowersQFT until the target size is met.
For the first example, we havez

V
= z

T
= 90% and

smax = 0.7. Using Table XIX, we can observe that
the simple algorithm findsQFT = 70, resulting in a
MSSIM of 0.85 instead of0.86 as found by the OQJT
and NOQJT algorithms. It also managed to perform this
with a single trancoding (but it is higher in general).
For the second example, we havez

V
= z

T
= 90% and

smax = 0.2. After 7 transcodings, the algorithm will
find the feasible solutionz

T
= 90% and QFT = 10

leading tos(I, 10, 90%) = 0.15 and an MSSIM of0.53
(while we have0.58 for NOQJT and0.63 for OQJT). Not
only this simple algorithm yields an inferior quality to
compared with NOQJT but the computational complex-
ity is significantly higher. This shows how resilient the
NOQJT system is, and how it compares favorably with
both the OQJT system and a naïve approach wherein
only the QF is adapted after an initial scaling to the
viewing conditions. The NOQJT system can provide
visual results close to those of the OQJT system with
impressive improvement in computational complexity.

VII. C ONCLUSIONS

In this paper, we analyzed the impact of various
combinations of QF and scaling parameter values on
the quality of transcoded images. Using SSIM, we
showed how quality varies with quality factorQFT

and scaling z
T

for various viewing conditions. We
also proposed two quality-aware transcoding systems:
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(a)

(b)

(c)

(d)

Figure 2. Transcoded Lena (details) showing solutions from the
example in section VI, with a maximum relative file size of 0.2 and
viewing conditionz

V
=90% (color enhanced and scaled for display

purposes): (a) original image, withQFI = 80; (b) solution from the
NOQJT system withdQF

∗

T = 30 andẑ∗

T = 50%; (c) optimal solution
using the OQJT system, withQF ∗

T = 50 andz∗

T
= 50%; (d) naïve

solution withQFT = 10 andz
T

= 90%.

an optimal quality JPEG transcoding (OQJT) system
and a near-optimal quality JPEG transcoding (NOQJT)
system. We compared the two systems with respect to
quality, computation complexity, and failure rate. The
NOQJT system yields very similar quality as OQJT with
a complexity up to 25 times smaller than that of the

Scaling,z
T

, %
QFT 10 20 30 40 50 60 70 80 90 100
10 0.15 0.27 0.33 0.39 0.44 0.47 0.50 0.52 0.53 0.56
20 0.19 0.31 0.41 0.47 0.53 0.57 0.60 0.63 0.65 0.67
30 0.21 0.35 0.44 0.52 0.58 0.62 0.65 0.68 0.71 0.74
40 0.23 0.37 0.47 0.55 0.61 0.65 0.69 0.72 0.75 0.79
50 0.24 0.39 0.50 0.57 0.63 0.68 0.72 0.75 0.78 0.79
60 0.25 0.40 0.51 0.60 0.65 0.70 0.74 0.78 0.81 0.88
70 0.26 0.42 0.54 0.62 0.68 0.73 0.78 0.82 0.85 0.96
80 0.28 0.45 0.57 0.65 0.72 0.77 0.82 0.86 0.88 1.00
90 0.30 0.49 0.61 0.70 0.77 0.83 0.88 0.91 0.93 0.99
100 0.31 0.53 0.68 0.80 0.88 0.93 0.96 0.97 0.98 0.99

Table XX
ACTUAL MSSIM FOR LENA, WITH QFI = 80, AS A FUNCTION OF

QFT AND z
T

, UNDER VIEWING CONDITIONSz
V

= 90%

OQJT system and performs an average between 1 and 2
transcoding operations per image. We have shown that
the failure rate can be made to be arbitrarily close to
zero. The proposed framework can be adapted to various
applications scenarios.
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